Search result for : author:anders m dale

Total 4 result(s) found

Abnormal Morphology of Select Cortical and Subcortical Regions in Neurofibromatosis Type 1.

Purpose To evaluate whether patients with neurofibromatosis type 1 (NF1)-a multisystem neurodevelopmental disorder with myriad imaging manifestations, including focal transient myelin vacuolization within the deep gray nuclei, brainstem, and cerebellum-exhibit differences in cortical and subcortical structures, particularly in subcortical regions where these abnormalities manifest. Materials and Methods In this retrospective study, by using clinically obtained three-dimensional T1-weighted MR images and established image analysis methods, 10 intracranial volume-corrected subcortical and 34 cortical regions of interest (ROIs) were quantitatively assessed in 32 patients with NF1 and 245 age- and sex-matched healthy control subjects. By using linear models, ROI cortical thicknesses and volumes were compared between patients with NF1 and control subjects, as a function of age. With hierarchic cluster analysis and partial correlations, differences in the pattern of association between cortical and subcortical ROI volumes in patients with NF1 and control subjects were also evaluated. Results Patients with NF1 exhibited larger subcortical volumes and thicker cortices of select regions, particularly the hippocampi, amygdalae, cerebellar white matter, ventral diencephalon, thalami, and occipital cortices. For the thalami and pallida and 22 cortical ROIs in patients with NF1, a significant inverse association between volume and age was found, suggesting that volumes decrease with increasing age. Moreover, compared with those in control subjects, ROIs in patients with NF1 exhibited a distinct pattern of clustering and partial correlations. Discussion Neurofibromatosis type 1 is characterized by larger subcortical volumes and thicker cortices of select structures. Most apparent within the hippocampi, amygdalae, cerebellar white matter, ventral diencephalon, thalami and occipital cortices, these neurofibromatosis type 1-associated volumetric changes may, in part, be age dependent.

Matthew J Barkovich, Chin Hong Tan, Ryan M Nillo, Yi Li, Duan Xu, Christine M Glastonbury, Orit A Glenn, William P Dillon, Christopher P Hess, Sabine Mueller, Cassie Kline, Anders M Dale, Terry L Jernigan, Leo P Sugrue, A James Barkovich, Rahul S Desikan
0

Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation.

To determine the validity and utility of using automated subcortical segmentation to identify atrophy of the hippocampus and other subcortical and cerebellar structures in patients with mesial temporal lobe epilepsy (MTLE). Volumetric MRIs were obtained on 21 patients with MTLE (11 right, 10 left) and 21 age- and gender-matched healthy controls. Labeling of subcortical and cerebellar structures was accomplished using automated reconstruction software (FreeSurfer). Multivariate analysis of covariance (MANCOVA) was used to explore group differences in intracranial-normalized, age-adjusted volumes and structural asymmetries. Step-wise discriminant function analysis was used to identify the linear combination of volumes that optimized classification of individual subjects. Results revealed the expected reduction in hippocampal volume on the side ipsilateral to the seizure focus, as well as bilateral reductions in thalamic and cerebellar gray matter volume. Analysis of structural asymmetries revealed significant asymmetry in the hippocampus and putamen in patients compared to controls. The discriminant function analysis revealed that patients with right and left MTLE were best distinguished from one another using a combination of subcortical volumes that included the right and left hippocampus and left thalamus (91-100% correct classification using cross-validation). Volumetric data obtained with automated segmentation of subcortical and cerebellar structures approximate data from previous studies based on manual tracings. Our data suggest that automated segmentation can provide a clinically useful means of evaluating the nature and extent of structural damage in patients with MTLE and may increase diagnostic classification of patients, especially when hippocampal atrophy is mild.

Carrie R McDonald, Donald J Hagler, Mazyar E Ahmadi, Evelyn Tecoma, Vicente Iragui, Anders M Dale, Eric Halgren
0

Structural growth trajectories and rates of change in the first 3 months of infant brain development.

The very early postnatal period witnesses extraordinary rates of growth, but structural brain development in this period has largely not been explored longitudinally. Such assessment may be key in detecting and treating the earliest signs of neurodevelopmental disorders. To assess structural growth trajectories and rates of change in the whole brain and regions of interest in infants during the first 3 months after birth. Serial structural T1-weighted and/or T2-weighted magnetic resonance images were obtained for 211 time points from 87 healthy term-born or term-equivalent preterm-born infants, aged 2 to 90 days, between October 5, 2007, and June 12, 2013. We segmented whole-brain and multiple subcortical regions of interest using a novel application of Bayesian-based methods. We modeled growth and rate of growth trajectories nonparametrically and assessed left-right asymmetries and sexual dimorphisms. Whole-brain volume at birth was approximately one-third of healthy elderly brain volume, and did not differ significantly between male and female infants (347 388 mm3 and 335 509 mm3, respectively, P = .12). The growth rate was approximately 1%/d, slowing to 0.4%/d by the end of the first 3 months, when the brain reached just more than half of elderly adult brain volume. Overall growth in the first 90 days was 64%. There was a significant age-by-sex effect leading to widening separation in brain sizes with age between male and female infants (with male infants growing faster than females by 200.4 mm3/d, SE = 67.2, P = .003). Longer gestation was associated with larger brain size (2215 mm3/d, SE = 284, P = 4×10-13). The expected brain size of an infant born one week earlier than average was 5% smaller than average; at 90 days it will not have caught up, being 2% smaller than average. The cerebellum grew at the highest rate, more than doubling in 90 days, and the hippocampus grew at the slowest rate, increasing by 47% in 90 days. There was left-right asymmetry in multiple regions of interest, particularly the lateral ventricles where the left was larger than the right by 462 mm3 on average (approximately 5% of lateral ventricular volume at 2 months). We calculated volume-by-age percentile plots for assessing individual development. Normative trajectories for early postnatal brain structural development can be determined from magnetic resonance imaging and could be used to improve the detection of deviant maturational patterns indicative of neurodevelopmental disorders.

Dominic Holland, Linda Chang, Thomas M Ernst, Megan Curran, Steven D Buchthal, Daniel Alicata, Jon Skranes, Heather Johansen, Antonette Hernandez, Robyn Yamakawa, Joshua M Kuperman, Anders M Dale
0

Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation.

Water diffusion magnetic resonance imaging (dMRI) is a powerful tool for studying biological tissue microarchitectures in vivo. Recently, there has been increased effort to develop quantitative dMRI methods to probe both length scale and orientation information in diffusion media. Diffusion spectrum imaging (DSI) is one such approach that aims to resolve such information based on the three-dimensional diffusion propagator at each voxel. However, in practice, only the orientation component of the propagator function is preserved when deriving the orientation distribution function. Here, we demonstrate how a straightforward extension of the linear spherical deconvolution (SD) model can be used to probe tissue orientation structures over a range (or "spectrum") of length scales with minimal assumptions on the underlying microarchitecture. Using high b-value Cartesian q-space data on a rat brain tissue sample, we demonstrate how this "restriction spectrum imaging" (RSI) model allows for separating the volume fraction and orientation distribution of hindered and restricted diffusion, which we argue stems primarily from diffusion in the extraneurite and intraneurite water compartment, respectively. Moreover, we demonstrate how empirical RSI estimates of the neurite orientation distribution and volume fraction capture important additional structure not afforded by traditional DSI or fixed-scale SD-like reconstructions, particularly in gray matter. We conclude that incorporating length scale information in geometric models of diffusion offers promise for advancing state-of-the-art dMRI methods beyond white matter into gray matter structures while allowing more detailed quantitative characterization of water compartmentalization and histoarchitecture of healthy and diseased tissue.

Nathan S White, Trygve B Leergaard, Helen D'Arceuil, Jan G Bjaalie, Anders M Dale
0

ITEMS YOU SAVED RECENTLY