Search result for : author:b m de jong

Total 4 result(s) found

Crossed Cerebellar Diaschisis in Alzheimer's Disease.

We describe the phenomenon of crossed cerebellar diaschisis (CCD) in four subjects diagnosed with Alzheimer's disease (AD) according to the National Institute on Aging -Alzheimer Association (NIA-AA) criteria, in combination with 18F-FDG PET and 11C-PiB PET imaging. 18F-FDG PET showed a pattern of cerebral metabolism with relative decrease most prominent in the frontal-parietal cortex of the left hemisphere and crossed hypometabolism of the right cerebellum. 11C-PiB PET showed symmetrical amyloid accumulation, but a lower relative tracer delivery (a surrogate of relative cerebral blood flow) in the left hemisphere. CCD is the phenomenon of unilateral cerebellar hypometabolism as a remote effect of supratentorial dysfunction of the brain in the contralateral hemisphere. The mechanism implies the involvement of the cortico-ponto-cerebellar fibers. The pathophysiology is thought to have a functional or reversible basis but can also reflect in secondary morphologic change. CCD is a well-recognized phenomenon, since the development of new imaging techniques, although scarcely described in neurodegenerative dementias. To our knowledge this is the first report describing CCD in AD subjects with documentation of both 18F-FDG PET and 11C-PiB PET imaging. CCD in our subjects was explained on a functional basis due to neurodegenerative pathology in the left hemisphere. There was no structural lesion and the symmetric amyloid accumulation did not correspond with the unilateral metabolic impairment. This suggests that CCD might be caused by non-amyloid neurodegeneration. The pathophysiological mechanism, clinical relevance and therapeutic implications of CCD and the role of the cerebellum in AD need further investigation.

F E Reesink, D Vallez Garcia, C A Sanchez-Catasus, D E Peretti, A T Willemsen, R Boellaard, S K Meles, R B Huitema, B M de Jong, R A Dierckx, P P De Deyn

Neurological picture. MRI development of early white matter signs in cerebellar-type multisystem atrophy.

B M de Jong

Cerebral reorganisation of human hand movement following dynamic immobilisation.

Surgical treatment of a flexor tendon lesion of the hand is followed by a 6-week period of dynamic immobilisation. This is achieved by the elastic strings of a Kleinert splint, enabling only passive and no active flexor movements. After such immobilisation, the appearance of a temporary clumsy hand indicates decreased efficiency of cerebral motor control. Using PET we identified the recruitment of contralateral parietal and cingulate activations specifically related to the suboptimal character of these hand movements. After 6-8 weeks, normalised movement was related with contralateral putamen activation. Activations of the sensorimotor cortex and cerebellum were present during both scanning sessions. Changes in the pattern of cerebral activations reflect functional reorganisation. The shift from cortical to striatal involvement, observed in the group of four patients, generates the concept of unlearned movements being relearned.

B M de Jong, J H Coert, M W Stenekes, K L Leenders, A M J Paans, J-P A Nicolai

Muscle co-activity tuning in Parkinsonian hand movement: disease-specific changes at behavioral and cerebral level.

We investigated simple directional hand movements based on different degrees of muscle co-activity, at behavioral and cerebral level in healthy subjects and Parkinson's disease (PD) patients. We compared "singular" movements, dominated by the activity of one agonist muscle, to "composite" movements, requiring conjoint activity of multiple muscles, in a center-out (right hand) step-tracking task. Behavioral parameters were obtained by EMG and kinematic recordings. fMRI was used to investigate differences in underlying brain activations between PD patients (N = 12) and healthy (age-matched) subjects (N = 18). In healthy subjects, composite movements recruited the striatum and cortical areas comprising bilaterally the supplementary motor area and premotor cortex, contralateral medial prefrontal cortex, primary motor cortex, primary visual cortex, and ipsilateral superior parietal cortex. Contrarily, the ipsilateral cerebellum was more involved in singular movements. This striking dichotomy between striatal and cortical recruitment vs. cerebellar involvement was considered to reflect the complementary roles of these areas in motor control, in which the basal ganglia are involved in movement selection and the cerebellum in movement optimization. Compared to healthy subjects, PD patients showed decreased activation of the striatum and cortical areas in composite movement, while performing worse at behavioral level. This implies that PD patients are especially impaired on tasks requiring highly tuned muscle co-activity. Singular movement, on the other hand, was characterized by a combination of increased activation of the ipsilateral parietal cortex and left cerebellum. As singular movement performance was only slightly compromised, we interpret this as a reflection of increased visuospatial processing, possibly as a compensational mechanism.

A M M van der Stouwe, C M Toxopeus, B M de Jong, P Yavuz, G Valsan, B A Conway, K L Leenders, N M Maurits