Search result for : author:david r hampson

Total 15 result(s) found

Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the Fragile X brain.

Principal neurons encode information by varying their firing rate and patterns precisely fine-tuned through GABAergic interneurons. Dysregulation of inhibition can lead to neuropsychiatric disorders, yet little is known about the molecular basis underlying inhibitory control. Here, we find that excessive GABA release from basket cells (BCs) attenuates the firing frequency of Purkinje neurons (PNs) in the cerebellum of Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mice, a model of Fragile X Syndrome (FXS) with abrogated expression of the Fragile X Mental Retardation Protein (FMRP). This over-inhibition originates from increased excitability and Ca transients in the presynaptic terminals, where Kv1.2 potassium channels are downregulated. By paired patch-clamp recordings, we further demonstrate that acutely introducing an N-terminal fragment of FMRP into BCs normalizes GABA release in the Fmr1-KO synapses. Conversely, direct injection of an inhibitory FMRP antibody into BCs, or membrane depolarization of BCs, enhances GABA release in the wild type synapses, leading to abnormal inhibitory transmission comparable to the Fmr1-KO neurons. We discover that the N-terminus of FMRP directly binds to a phosphorylated serine motif on the C-terminus of Kv1.2; and that loss of this interaction in BCs exaggerates GABA release, compromising the firing activity of PNs and thus the output from the cerebellar circuitry. An allosteric Kv1.2 agonist, docosahexaenoic acid, rectifies the dysregulated inhibition in vitro as well as acoustic startle reflex and social interaction in vivo of the Fmr1-KO mice. Our results unravel a novel molecular locus for targeted intervention of FXS and perhaps autism.

Yi-Mei Yang, Jason Arsenault, Alaji Bah, Mickael Krzeminski, Adam Fekete, Owen Y Chao, Laura K Pacey, Alex Wang, Julie Forman-Kay, David R Hampson, Lu-Yang Wang

L-Serine-O-phosphate in the central nervous system.

L-serine-O-phosphate (L-SOP) is the immediate precursor to L-serine in the serine synthesis pathway and is also an agonist at the Group III metabotropic glutamate receptors (mGluRs). L-SOP is produced by the enzyme phosphoserine aminotransferase (PSAT) and metabolized to L-serine by phosphoserine phosphatase (PSP). Using a novel analytical procedure, we show that L-SOP is present in rat whole brain, and that in transfected cells, it is substantially more potent than L-glutamate at the mGluR4 receptor subtype. Immunocytochemical analyses showed that the distributions of PSAT and PSP in the cerebral cortex, hippocampus, and cerebellum were similar in the rat and macaque monkey brain. In the rat hippocampus, cells within the subgranular zone were co-labeled with anti-PSP and anti-PSA-NCAM, a marker for neurogenic cells. In the cerebellar cortex, Purkinje neurons expressed relatively high levels of both enzymes while robust expression of PSAT was also observed in the Bergmann glia. L-SOP released from Purkinje neurons or Bergmann glia could activate mGluR4 present on parallel fiber terminals. The presence of l-SOP in brain, its high potency at mGluR4, together with the restricted distributions of the synthetic and metabolic enzymes, suggest that L-SOP might act activate Group III metabotropic glutamate receptors in the CNS.

Jordan E Antflick, Sandra Vetiska, Joan S Baizer, Yi Yao, Glen B Baker, David R Hampson

Glutamate transporter coupling to Na,K-ATPase.

Deactivation of glutamatergic signaling in the brain is mediated by glutamate uptake into glia and neurons by glutamate transporters. Glutamate transporters are sodium-dependent proteins that putatively rely indirectly on Na,K-ATPases to generate ion gradients that drive transmitter uptake. Based on anatomical colocalization, mutual sodium dependency, and the inhibitory effects of the Na,K-ATPase inhibitor ouabain on glutamate transporter activity, we postulated that glutamate transporters are directly coupled to Na,K-ATPase and that Na,K-ATPase is an essential modulator of glutamate uptake. Na,K-ATPase was purified from rat cerebellum by tandem anion exchange and ouabain affinity chromatography, and the cohort of associated proteins was characterized by mass spectrometry. The alpha1-alpha 3 subunits of Na,K-ATPase were detected, as were the glutamate transporters GLAST and GLT-1, demonstrating that glutamate transporters copurify with Na,K-ATPases. The link between glutamate transporters and Na,K-ATPase was further established by coimmunoprecipitation and colocalization. Analysis of the regulation of glutamate transporter and Na,K-ATPase activities was assessed using [(3)H]D-aspartate, [(3)H]L-glutamate, and rubidium-86 uptake into synaptosomes and cultured astrocytes. In synaptosomes, ouabain produced a dose-dependent inhibition of glutamate transporter and Na,K-ATPase activities, whereas in astrocytes, ouabain showed a bimodal effect whereby glutamate transporter activity was stimulated at 1 microm ouabain and inhibited at higher concentrations. The effects of protein kinase inhibitors on [(3)H]D-aspartate uptake indicated the selective involvement of Src kinases, which are probably a component of the Na,K-ATPase/glutamate transporter complex. These findings demonstrate that glutamate transporters and Na,K-ATPases are part of the same macromolecular complexes and operate as a functional unit to regulate glutamatergic neurotransmission.

Erin M Rose, Joseph C P Koo, Jordan E Antflick, Syed M Ahmed, Stephane Angers, David R Hampson

The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration.

The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration.

Sujeenthar Tharmalingam, David R Hampson

The calcium-sensing receptor and integrins modulate cerebellar granule cell precursor differentiation and migration.

In the developing cerebellum granule cell precursors (GCPs) proliferate in the external granule cell layer before differentiating and migrating to the inner granule cell layer. Aberrant GCP proliferation leads to medulloblastoma, the most prevalent form of childhood brain cancer. Here, we demonstrate that the calcium-sensing receptor (CaSR), a homodimeric G-protein coupled receptor, functions in conjunction with cell adhesion proteins, the integrins, to enhance GCP migration and cell homing by promoting GCP differentiation. During the second postnatal week a robust peak in CaSR expression was observed in GCPs; reciprocal immunoprecipitation experiments conducted during this period established that the CaSR and β1 integrins are present together in a macromolecular protein complex. Analysis of cell-surface proteins demonstrated that activation of the CaSR by positive allosteric modulators promoted plasma membrane expression of β1 integrins via ERK2 and AKT phosphorylation and resulted in increased GCP migration toward an extracellular matrix protein. The results of in vivo experiments whereby CaSR modulators were injected i.c.v. revealed that CaSR activation promoted radial migration of GCPs by enhancing GCP differentiation, and conversely, a CaSR inhibitor disrupted GCP differentiation and promoted GCP proliferation. Our results demonstrate that an ion-sensing G-protein coupled receptor acts to promote neuronal differentiation and homing during cerebellar maturation. These findings together with those of others also suggest that CaSR/integrin complexes act to transduce extracellular calcium signals into cellular movement, and may function in this capacity as a universal cell migration/homing complex in the developing brain.

Sujeenthar Tharmalingam, Chiping Wu, David R Hampson

Autism spectrum disorders and neuropathology of the cerebellum.

The cerebellum contains the largest number of neurons and synapses of any structure in the central nervous system. The concept that the cerebellum is solely involved in fine motor function has become outdated; substantial evidence has accumulated linking the cerebellum with higher cognitive functions including language. Cerebellar deficits have been implicated in autism for more than two decades. The computational power of the cerebellum is essential for many, if not most of the processes that are perturbed in autism including language and communication, social interactions, stereotyped behavior, motor activity and motor coordination, and higher cognitive functions. The link between autism and cerebellar dysfunction should not be surprising to those who study its cellular, physiological, and functional properties. Postmortem studies have revealed neuropathological abnormalities in cerebellar cellular architecture while studies on mouse lines with cell loss or mutations in single genes restricted to cerebellar Purkinje cells have also strongly implicated this brain structure in contributing to the autistic phenotype. This connection has been further substantiated by studies investigating brain damage in humans restricted to the cerebellum. In this review, we summarize advances in research on idiopathic autism and three genetic forms of autism that highlight the key roles that the cerebellum plays in this spectrum of neurodevelopmental disorders.

David R Hampson, Gene J Blatt

Persistent astrocyte activation in the fragile X mouse cerebellum.

Fragile X Syndrome, the most common single gene cause of autism, results from loss of the RNA-binding protein FMRP. Although FMRP is highly expressed in neurons, it has also recently been identified in glia. It has been postulated that in the absence of FMRP, abnormal function of non-neuronal cells may contribute to the pathogenesis of the disorder. We previously demonstrated reduced numbers of oligodendrocyte precursor cells and delayed myelination in the cerebellum of fragile X (Fmr1) knockout mice. We used quantitative western blotting and immunocytochemistry to examine the status of astrocytes and microglia in the cerebellum of Fmr1 mice during development and in adulthood. We report increased expression of the astrocyte marker GFAP in the cerebellum of Fmr1 mice starting in the second postnatal week and persisting in to adulthood. At 2 weeks postnatal, expression of Tumor Necrosis Factor Receptor 2 (TNFR2) and Leukemia Inhibitory Factor (LIF) were elevated in the Fmr1 KO cerebellum. In adults, expression of TNFR2 and the glial marker S100β were also elevated in Fmr1 knockouts, but LIF expression was not different from wild-type mice. We found no evidence of microglial activation or neuroinflammation at any age examined. These findings demonstrate an atypical pattern of astrogliosis in the absence of microglial activation in Fmr1 knockout mouse cerebellum. Enhanced TNFR2 and LIF expression in young mice suggests that changes in the expression of astrocytic proteins may be an attempt to compensate for delayed myelination in the developing cerebellum of Fmr1 mice.

Laura K K Pacey, Sihui Guan, Sujeenthar Tharmalingam, Christian Thomsen, David R Hampson

Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain.

Fragile X syndrome is the most common inherited form of mental retardation and autism. It is caused by a reduction or elimination of the expression of fragile X mental retardation protein (FMRP). Because fragile X syndrome is a neurodevelopmental disorder, it is important to fully document the cell type expression in the developing CNS to provide a better understanding of the molecular function of FMRP, and the pathogenesis of the syndrome. We investigated FMRP expression in the brain using double-labeling immunocytochemistry and cell type markers for neurons (NeuN), astrocytes (S100β), microglia (Iba-1), and oligodendrocyte precursor cells (NG2). The hippocampus, striatum, cingulate cortex, retrosplenial cortex, corpus callosum and cerebellum were assessed in wild-type C57/BL6 mice at postnatal days 0, 10, 20, and adult. Our results demonstrate that FMRP is ubiquitously expressed in neurons at all times and brain regions studied, except for corpus callosum where FMRP was predominantly present in astrocytes at all ages. FMRP expression in Iba-1 and NG2-positive cells was detected at postnatal day 0 and 10 and gradually decreased to very low or undetectable levels in postnatal day 20 and adult mice. Our results reveal that in addition to continuous and extensive expression in neurons in the immature and mature brain, FMRP is also present in astrocytes, oligodendrocyte precursor cells, and microglia during the early and mid-postnatal developmental stages of brain maturation. Prominent expression of FMRP in glia during these crucial stages of brain development suggests an important contribution to normal brain function, and in its absence, to the fragile X phenotype.

Shervin Gholizadeh, Sebok Kumar Halder, David R Hampson

Transduction of the central nervous system after intracerebroventricular injection of adeno-associated viral vectors in neonatal and juvenile mice.

Several neurodevelopmental and neurodegenerative disorders affecting the central nervous system are potentially treatable via viral vector-mediated gene transfer. Adeno-associated viral (AAV) vectors have been used in clinical trials because of their desirable properties including a high degree of safety, efficacy, and stability. Major factors affecting tropism, expression level, and cell type specificity of AAV-mediated transgenes include encapsidation of different AAV serotypes, promoter selection, and the timing of vector administration. In this study, we evaluated the ability of single-stranded AAV2 vectors pseudotyped with viral capsids from serotype 9 (AAV2/9) to transduce the brain and target gene expression to specific cell types after intracerebroventricular injection into mice. Titer-matched AAV2/9 vectors encoding the enhanced green fluorescent protein (eGFP) reporter, driven by the cytomegalovirus (CMV) promoter, or the neuron-specific synapsin-1 promoter, were injected bilaterally into the lateral ventricles of C57/BL6 mice on postnatal day 5 (neonatal) or 21 (juvenile). Brain sections were analyzed 25 days after injection, using immunocytochemistry and confocal microscopy. eGFP immunohistochemistry after neonatal and juvenile administration of viral vectors revealed transduction throughout the brain including the striatum, hippocampus, cerebral cortex, and cerebellum, but with different patterns of cell-specific gene expression. eGFP expression was seen in astrocytes after treatment on postnatal day 5 with vectors carrying the CMV promoter, expanding the usefulness of AAVs for modeling and treating diseases involving glial cell pathology. In contrast, injection of AAV2/9-CMV-eGFP on postnatal day 21 resulted in preferential transduction of neurons. Administration of AAV2/9-eGFP with the synapsin-1 promoter on either postnatal day 5 or 21 resulted in widespread neuronal transduction. These results outline efficient methods and tools for gene delivery to the nervous system by direct, early postnatal administration of AAV vectors. Our findings highlight the importance of promoter selection and age of administration on the intensity, distribution, and cell type specificity of AAV transduction in the brain.

Shervin Gholizadeh, Sujeenthar Tharmalingam, Margarita E Macaldaz, David R Hampson

Delayed myelination in a mouse model of fragile X syndrome.

Fragile X Syndrome is the most common inherited cause of autism. Fragile X mental retardation protein (FMRP), which is absent in fragile X, is an mRNA binding protein that regulates the translation of hundreds of different mRNA transcripts. In the adult brain, FMRP is expressed primarily in the neurons; however, it is also expressed in developing glial cells, where its function is not well understood. Here, we show that fragile X (Fmr1) knockout mice display abnormalities in the myelination of cerebellar axons as early as the first postnatal week, corresponding roughly to the equivalent time in human brain development when symptoms of the syndrome first become apparent (1-3 years of age). At postnatal day (PND) 7, diffusion tensor magnetic resonance imaging showed reduced volume of the Fmr1 cerebellum compared with wild-type mice, concomitant with an 80-85% reduction in the expression of myelin basic protein, fewer myelinated axons and reduced thickness of myelin sheaths, as measured by electron microscopy. Both the expression of the proteoglycan NG2 and the number of PDGFRα+/NG2+ oligodendrocyte precursor cells were reduced in the Fmr1 cerebellum at PND 7. Although myelin proteins were still depressed at PND 15, they regained wild-type levels by PND 30. These findings suggest that impaired maturation or function of oligodendrocyte precursor cells induces delayed myelination in the Fmr1 mouse brain. Our results bolster an emerging recognition that white matter abnormalities in early postnatal brain development represent an underlying neurological deficit in Fragile X syndrome.

Laura K K Pacey, Ingrid C Y Xuan, Sihui Guan, Dafna Sussman, R Mark Henkelman, Yan Chen, Christian Thomsen, David R Hampson

Modulation of glutamate release from parallel fibers by mGlu4 and pre-synaptic GABA(A) receptors.

The regulation of pre-synaptic glutamate release is important in the maintenance and fidelity of excitatory transmission in the nervous system. In this study, we report a novel interaction between a ligand-gated ion channel and a G-protein coupled receptor which regulates glutamate release from parallel fiber axon terminals. Immunocytochemical analysis revealed that GABA(A) receptors and the high affinity group III metabotropic glutamate receptor subtype 4 (mGlu4) are co-localized on glutamatergic parallel fiber axon terminals in the cerebellum. GABA(A) and mGlu4 receptors were also found to co-immunoprecipitate from cerebellar membranes. Independently, these two receptors have opposing roles on glutamate release: pre-synaptic GABA(A) receptors promote, while mGlu4 receptors inhibit, glutamate release. However, coincident activation of GABA(A) receptors with muscimol and mGlu4 with the agonist (2S)-S-2-amino-4-phosphonobutanoic acid , increased glutamate release from [(3) H]glutamate-loaded cerebellar synaptosomes above that observed with muscimol alone. Further support for an interaction between GABA(A) and mGlu4 receptors was obtained in the mGlu4 knockout mouse which displayed reduced binding of the GABA(A) ligand [(35) S]tert-butylbicyclophosphorothionate, and decreased expression of the α1, α6, β2 GABA(A) receptor subunits in the cerebellum. Taken together, our data suggest a new role for mGlu4 whereby simultaneous activation with GABA(A) receptors acts to amplify glutamate release at parallel fiber-Purkinje cell synapses.

Jordan E Antflick, David R Hampson

Motor learning in the VOR: the cerebellar component.

This paper reviews results that support a model in which memory for VOR gain is initially encoded in the flocculus, and in which cerebellar LTD and LTP are responsible for gain increases and gain decreases, respectively. We also review data suggesting that after it is encoded, motor memory can either be disrupted, possibly by a local mechanism, or else consolidated. We show that consolidation can be rapid, in which case the frequency dependence of learning is unchanged and we will argue that this is consistent with a local mechanism of consolidation. In the longer term, however, the available evidence supports the transfer of memory out of the flocculus. In new experiments reported here, we address the mechanism of memory encoding. Pharmacological evidence shows that both mGluR1 and GABA(B) receptors in the flocculus are necessary for gain-up, but not for gain-down learning. Immunohistochemical experiments show that the two receptors are largely segregated on different dendritic spines on Purkinje cells. Together with what is already known of the mechanisms of cerebellar LTD and LTP, our data suggest that the direction of learning may be determined by interactions among groups of spines. Our results also provide new evidence for the existence of frequency channels for vestibular signals within the cerebellar cortex.

Dianne M Broussard, Heather K Titley, Jordan Antflick, David R Hampson

Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging.

Fragile X Syndrome (FXS) is the most common single gene cause of inherited mental impairment, and cognitive deficits can range from simple learning disabilities to mental retardation. Human FXS is caused by a loss of the Fragile X Mental Retardation Protein (FMRP). The fragile X knockout (FX KO) mouse also shows a loss of FMRP, as well as many of the physical and behavioural characteristics of human FXS. This work aims to characterize the anatomical changes between the FX KO and a corresponding wild type mouse. Significant volume decreases were found in two regions within the deep cerebellar nuclei, namely the nucleus interpositus and the fastigial nucleus, which may be caused by a loss of neurons as indicated by histological analysis. Well-known links between these nuclei and previously established behavioural and physical characteristics of FXS are discussed. The loss of FMRP has a significant effect on these two nuclei, and future studies of FXS should evaluate the biochemical, physiological, and behavioral consequences of alterations in these key nuclei.

Jacob Ellegood, Laura K Pacey, David R Hampson, Jason P Lerch, R Mark Henkelman

Determination of L-serine-O-phosphate in rat and mouse brain tissue using high-performance liquid chromatography and fluorimetric detection.

L-Serine-O-phosphate (L-SOP), the precursor of l-serine, is an agonist at group III metabotropic glutamate receptors. Despite the interest in L-SOP, very few articles have reported its brain levels. Here we report a convenient and reproducible method for simultaneous analysis of L-SOP and several other important amino acids in brain tissue using high-performance liquid chromatography (HPLC) with fluorimetric detection after derivatization with o-phthaldialdehyde and N-isobutyl-L-cysteine. Analyses were carried out in rat whole brain and cerebellum and in mouse whole brain, forebrain, amygdala, and prefrontal cortex. The method should be useful for future comprehensive neurochemical and pharmacological studies on neuropsychiatric disorders.

Gail A Rauw, Suzanne L Grant, Viviane Labrie, John C Roder, Jordan E Antflick, David R Hampson, Glen B Baker

Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities.

Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1 mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68 microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1 mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.

Jakub Sikora, Shaalee Dworski, E Ellen Jones, Mustafa A Kamani, Matthew C Micsenyi, Tomo Sawada, Pauline Le Faouder, Justine Bertrand-Michel, Aude Dupuy, Christopher K Dunn, Ingrid Cong Yang Xuan, Josefina Casas, Gemma Fabrias, David R Hampson, Thierry Le