Search result for : author:hartmut mohlberg

Total 3 result(s) found

Cytoarchitecture, probability maps, and functions of the human supplementary and pre-supplementary motor areas.

The dorsal  mesial frontal cortex contains the supplementary motor area (SMA) and the pre-supplementary motor area (pre-SMA), which play an important role in action and cognition. Evidence from cytoarchitectonic, stimulation, and functional studies suggests structural and functional divergence between the two subregions. However, a microstructural map of these areas obtained in a representative sample of brains in a stereotaxic reference space is still lacking. In the present study we show that the dorsal mesial frontal motor cortex comprises two microstructurally different brain regions: area SMA and area pre-SMA. Area-specific cytoarchitectonic patterns were studied in serial histological sections stained for cell bodies of ten human postmortem brains. Borders of the two cortical areas were identified using image analysis and statistical features. The 3D reconstructed areas were transferred to a common reference space, and probabilistic maps were calculated by superimposing the individual maps. A coordinate-based meta-analysis of functional imaging data was subsequently performed using the two probabilistic maps as microstructurally defined seed regions. It revealed that areas SMA and pre-SMA were strongly co-activated with areas in precentral, supramarginal and superior frontal gyri, Rolandic operculum, thalamus, putamen and cerebellum. Both areas were related to motor functions, but area pre-SMA was involved in more complex processes such as learning, cognitive processes and perception. The here described subsequent analyses led to converging evidence supporting the microstructural, and functional segregation of areas SMA and pre-SMA, and maps will be made available to the scientific community to further elucidate the microstructural substrates of motor and cognitive control.

Jianghai Ruan, Sebastian Bludau, Nicola Palomero-Gallagher, Svenja Caspers, Hartmut Mohlberg, Simon B Eickhoff, Rüdiger J Seitz, Katrin Amunts

Cerebellar localization of the NO-receptive soluble guanylyl cyclase subunits-alpha(2)/beta (1) in non-human primates.

Nitric-oxide-sensitive guanylyl cyclase (NO-sGC) plays a pivotal role in many second messenger cascades. Neurotransmission- and neuropathology-related changes in NO-sGC have been suggested. However, the cellular localization of NO-sGC in primate brains, including humans, remains unknown. Biochemical evidence has linked the alpha(2)-subunit of NO-sGC directly to neurotransmission in rodents. Here, we have used a recently characterized subunit-specific antibody for the localization of the alpha(2)-subunit on sections from the cerebelli of the common marmoset (Callithrix jacchus; New World monkey) and macaque monkeys (Macaca mulatta, M. fascicularis; Old World monkeys). In contrast to the more ubiquitous cytoplasmic presence of subunit-beta(1), the alpha(2)-subunit is mainly confined to the somato-dendritic membrane including the spines of the Purkinje cells. Only limited colocalization with presynaptically localized synaptophysin has been seen under our staining conditions, indicating a higher abundance of subunit-alpha(2) at the postsynaptic site. This localization indicates that subunit-alpha(2) links NO-sGC to neurotransmission, whereas subunit-beta(1) may act as a cytoplasmic regulator/activator by contributing to active heterodimer formation via translocation from the cytoplasm to the cell membrane. The last-mentioned action may be a prerequisite for generating nitric-oxide-dependent, subcellular, and postsynaptically localized cGMP signals along neuronal processes.

Hans-J Bidmon, Hartmut Mohlberg, Gunnar Habermann, Eberhard Buse, Karl Zilles, Sönke Behrends

Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns.

The cerebellar nuclei are involved in several brain functions, including the modulation of motor and cognitive performance. To differentiate their participation in these functions, and to analyze their changes in neurodegenerative and other diseases as revealed by neuroimaging, stereotaxic maps are necessary. These maps reflect the complex spatial structure of cerebellar nuclei with adequate spatial resolution and detail. Here we report on the cytoarchitecture of the dentate, interposed (emboliform and globose) and fastigial nuclei, and introduce 3D probability maps in stereotaxic MNI-Colin27 space as a prerequisite for subsequent meta-analysis of their functional involvement. Histological sections of 10 human post mortem brains were therefore examined. Differences in cell density were measured and used to distinguish a dorsal from a ventral part of the dentate nucleus. Probabilistic maps were calculated, which indicate the position and extent of the nuclei in 3D-space, while considering their intersubject variability. The maps of the interposed and the dentate nuclei differed with respect to their interaction patterns and functions based on meta-analytic connectivity modeling and quantitative functional decoding, respectively. For the dentate nucleus, significant (p < 0.05) co-activations were observed with thalamus, supplementary motor area (SMA), putamen, BA 44 of Broca's region, areas of superior and inferior parietal cortex, and the superior frontal gyrus (SFG). In contrast, the interposed nucleus showed more limited co-activations with SMA, area 44, putamen, and SFG. Thus, the new stereotaxic maps contribute to analyze structure and function of the cerebellum. These maps can be used for anatomically reliable and precise identification of degenerative alteration in MRI-data of patients who suffer from various cerebellar diseases.

Stefanie Tellmann, Sebastian Bludau, Simon Eickhoff, Hartmut Mohlberg, Martina Minnerop, Katrin Amunts