Search result for : author:mary e hatten

Total 17 result(s) found

ASTN2 modulates synaptic strength by trafficking and degradation of surface proteins.

Surface protein dynamics dictate synaptic connectivity and function in neuronal circuits. , a gene disrupted by copy number variations (CNVs) in neurodevelopmental disorders, including autism spectrum, was previously shown to regulate the surface expression of ASTN1 in glial-guided neuronal migration. Here, we demonstrate that ASTN2 binds to and regulates the surface expression of multiple synaptic proteins in postmigratory neurons by endocytosis, resulting in modulation of synaptic activity. In cerebellar Purkinje cells (PCs), by immunogold electron microscopy, ASTN2 localizes primarily to endocytic and autophagocytic vesicles in the cell soma and in subsets of dendritic spines. Overexpression of ASTN2 in PCs, but not of ASTN2 lacking the FNIII domain, recurrently disrupted by CNVs in patients, including in a family presented here, increases inhibitory and excitatory postsynaptic activity and reduces levels of ASTN2 binding partners. Our data suggest a fundamental role for ASTN2 in dynamic regulation of surface proteins by endocytic trafficking and protein degradation.

Hourinaz Behesti, Taylor R Fore, Peter Wu, Zachi Horn, Mary Leppert, Court Hull, Mary E Hatten

Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration.

Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6alpha localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement. Ectopic expression or silencing of Par6alpha inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to "pull" the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6alpha.

David J Solecki, Niraj Trivedi, Eve-Ellen Govek, Ryan A Kerekes, Shaun S Gleason, Mary E Hatten

Differentiation of ES cells into cerebellar neurons.

The neuronal circuits of the cerebellar cortex are essential for motor and sensory learning, associative memory formation, and the vestibular ocular reflex. In children and young adults, tumors of the granule cell, the medulloblastomas, represent 40% of brain tumors. We report the differentiation of E14 ES cells into mature granule neurons by sequential treatment with secreted factors (WNT1, FGF8, and RA) that initiate patterning in the cerebellar region of the neural tube, bone morphogenic proteins (BMP6/7 and GDF7) that induce early granule cell progenitor markers (MATH1, MEIS1, ZIC1), mitogens (SHH, JAG1) that control proliferation and induce additional granule cell markers (Cyclin D2, PAX2/6), and culture in glial-conditioned medium to induce markers of mature granule neurons (GABAalpha(6)r), including ZIC2, a unique marker for granule neurons. Differentiated ES cells formed classic "T-shaped" granule cell axons in vitro, and implantation of differentiated Pde1c-Egfp-BAC transgenic ES cells into the external granule cell layer of neonatal mice resulted in the extension of parallel fibers, migration across the molecular layer, incorporation into the internal granule cell layer, and extension of short dendrites, typical of young granule cells forming synaptic connections with afferent mossy fibers. These results underscore the utility of treating ES cells with local, inductive signals that regulate CNS neuronal development in vivo as a strategy for cell replacement therapy of defined neuronal populations.

Enrique Salero, Mary E Hatten

Molecular markers of neuronal progenitors in the embryonic cerebellar anlage.

The cerebellum, like the cerebrum, includes a nuclear structure and an overlying cortical structure. Experiments in the past decade have expanded knowledge beyond the traditional function of the cerebellum to include critical roles in motor learning and memory and sensory discrimination. The initial steps in cerebellar development depend on inductive signaling involving FGF and Wnt proteins produced at the mesencephalic/metencephalic boundary. To address the issue of how individual cerebellar cell fates within the cerebellar territory are specified, we examined the expression of transcription factors, including mammalian homologues of LIM homeodomain-containing proteins, basic helix-loop-helix proteins, and three amino acid loop-containing proteins. The results of these studies show that combinatorial codes of transcription factors define precursors of the cerebellar nuclei, and both Purkinje cells and granule neurons of the cerebellar cortex. Examination of gene expression patterns in several hundred lines of Egfp-BAC (bacterial artificial chromosome) transgenic mice in the GENSAT Project revealed numerous genes with restricted expression in cerebellar progenitor populations, including genes specific for cerebellar nuclear precursors and Purkinje cell precursors. In addition, we identified patterns of gene expression that link granule and Purkinje cells to their precerebellar nuclei. These results identify molecular pathways that offer new insights on the development of the nuclear and cortical structures of the cerebellum, as well as components of the cerebellar circuitry.

Daniver Morales, Mary E Hatten

Neuronal polarity in CNS development.

The diversity of neuronal morphologies and the complexity of synaptic connections in the mammalian brain provide striking examples of cell polarity. Over the past decade, the identification of the PAR (for partitioning-defective) proteins, their function in polarity in the Caenorhabditis elegans zygote, and the conservation of polarity proteins related to the PAR polarity complex in Drosophila and vertebrates, kindled intense interest in polarity pathways. Although the existence of a conserved polarity protein complex does not prove that these proteins function the same way in different systems, the emergence of an evolutionarily conserved mechanism that regulates cell polarity provides an exciting opportunity to define the role of polarity proteins in the generation of the diverse array of cell types and patterns of connections in the developing mammalian brain. This review addresses emerging genetic, molecular genetic, biochemical, and cell biological approaches and mechanisms that control neuronal polarity, focusing on recent studies using the neonatal cerebellum and hippocampus as model systems.

David J Solecki, Eve-Ellen Govek, Toshifumi Tomoda, Mary E Hatten

mPar6 alpha controls neuronal migration.

We review studies on the polarity of developing cerebellar granule, showing that the centrosome localizes to the pole of the neuron that extrudes the nascent axon, and the Rho GTPase Cdc42 (cell division cycle 42) activates the mPar6alpha/Par3 (Par for partitioning defective) complex to coordinate actin dynamics in the growth cone. Subsequently, mPar6alpha signaling controls the migration of immature granule neurons down the Bergmann glial fibers into the internal granule cell layer in which they establish synaptic connections.

David J Solecki, Eve-Ellen Govek, Mary E Hatten

The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation.

Recurrent genetic alterations in human medulloblastoma (MB) include mutations in the sonic hedgehog (SHH) signaling pathway and TP53 inactivation (approximately 25% and 10% of cases, respectively). However, mouse models of MB, regardless of their initiating lesions, generally depend upon p53 inactivation for rapid onset and high penetrance. The gene encoding the cyclin-dependent kinase inhibitor p18(Ink4c) is transiently expressed in mouse cerebellar granule neuronal precursor cells (GNPs) as they exit the cell division cycle and differentiate. Coinactivation of Ink4c and p53 provided cultured GNPs with an additive proliferative advantage, either in the presence or absence of Shh, and induced MB with low penetrance but with greatly increased incidence following postnatal irradiation. In contrast, mice lacking one or two functional Ink4c alleles and one copy of Patched (Ptc1) encoding the Shh receptor rapidly developed MBs that retained wild-type p53. In tumor cells purified from double heterozygotes, the wild-type Ptc1 allele, but not Ink4c, was inactivated. Therefore, when combined with Ptc1 mutation, Ink4c is haploinsufficient for tumor suppression. Methylation of INK4C (CDKN2C) was observed in four of 23 human MBs, and p18(INK4C) protein expression was extinguished in 14 of 73 cases. Hence, p18(INK4C) loss may contribute to MB formation in children.

Tamar Uziel, Frederique Zindy, Suqing Xie, Youngsoo Lee, Antoine Forget, Susan Magdaleno, Jerold E Rehg, Christopher Calabrese, David Solecki, Charles G Eberhart, Sarah E Sherr, Sarah Plimmer, Steven C Clifford, Mary E Hatten, Peter J McKinnon, Richard J

Par6alpha signaling controls glial-guided neuronal migration.

Neuronal migrations along glial fibers provide a primary pathway for the formation of cortical laminae. To examine the mechanisms underlying glial-guided migration, we analyzed the dynamics of cytoskeletal and signaling components in living neurons. Migration involves the coordinated two-stroke movement of a perinuclear tubulin 'cage' and the centrosome, with the centrosome moving forward before nuclear translocation. Overexpression of mPar6alpha disrupts the perinuclear tubulin cage, retargets PKCzeta and gamma-tubulin away from the centrosome, and inhibits centrosomal motion and neuronal migration. Thus, we propose that during neuronal migration the centrosome acts to coordinate cytoskeletal dynamics in response to mPar6alpha-mediated signaling.

David J Solecki, Lynn Model, Jedidiah Gaetz, Tarun M Kapoor, Mary E Hatten

Mice that lack astrotactin have slowed neuronal migration.

The cortical regions of the brain are laminated as a result of directed migration of precursor cells along glia during development. Previously, we have used an assay system to identify astrotactin as a neuronal ligand for migration on glial fibers. To examine the function of astrotactin in vivo, we generated a null mutation by targeted gene disruption. The cerebella of astrotactin null mice are approximately 10% smaller than wild type. In vitro and in vivo cerebellar granule cell assays show a decrease in neuron-glial binding, a reduction in migration rates and abnormal development of Purkinje cells. Consequences of this are poorer balance and coordination. Thus, astrotactin functions in migration along glial processes in vivo, a process required for generating laminar structures and for the development of synaptic partner systems.

Niels C Adams, Toshifumi Tomoda, Margaret Cooper, Gunnar Dietz, Mary E Hatten

Consensus Paper: Cerebellar Development.

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.

Ketty Leto, Marife Arancillo, Esther B E Becker, Annalisa Buffo, Chin Chiang, Baojin Ding, William B Dobyns, Isabelle Dusart, Parthiv Haldipur, Mary E Hatten, Mikio Hoshino, Alexandra L Joyner, Masanobu Kano, Daniel L Kilpatrick, Noriyuki Koibuchi, Silvia

WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation.

During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors.

Sandrine L Anne, Eve-Ellen Govek, Olivier Ayrault, Jee Hae Kim, Xiaodong Zhu, David A Murphy, Linda Van Aelst, Martine F Roussel, Mary E Hatten

Multitasking on the run.

Researchers combine genetics and imaging to reveal that individual granule cells in the cerebellum integrate sensory and motor information.

Mary E Hatten, Stephen G Lisberger

PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a major role in cholesterol homeostasis through enhanced degradation of the LDL receptor (LDLR) in liver. As novel inhibitors/silencers of PCSK9 are now being tested in clinical trials to treat hypercholesterolemia, it is crucial to define the physiological consequences of the lack of PCSK9 in various organs. LDLR regulation by PCSK9 has not been extensively described during mouse brain development and injury. Herein, we show that PCSK9 and LDLR are co-expressed in mouse brain during development and at adulthood. Although the protein levels of LDLR and apolipoprotein E (apoE) in the adult brain of Pcsk9(-/-) mice are similar to those of wild-type (WT) mice, LDLR levels increased and were accompanied by a reduction of apoE levels during development. This suggests that the upregulation of LDLR protein levels in Pcsk9(-/-) mice enhances apoE degradation. Upon ischemic stroke, PCSK9 was expressed in the dentate gyrus between 24 h and 72 h following brain reperfusion. Although mouse behavior and lesion volume were similar, LDLR protein levels dropped ∼2-fold less in the Pcsk9(-/-)-lesioned hippocampus, without affecting apoE levels and neurogenesis. Thus, PCSK9 downregulates LDLR levels during brain development and following transient ischemic stroke in adult mice.

Estelle Rousselet, Jadwiga Marcinkiewicz, Jasna Kriz, Ann Zhou, Mary E Hatten, Annik Prat, Nabil G Seidah

Development and cancer of the cerebellum.

Medulloblastoma (MB) is the most common malignant pediatric brain tumor and is thought to arise from genetic anomalies in developmental pathways required for the normal maturation of the cerebellar cortex, notably developmental pathways for granule cell progenitor (GCP) neurogenesis. Over the past decade, a wide range of studies have identified genes and their regulators within signaling pathways, as well as noncoding RNAs, that have crucial roles in both normal cerebellar development and pathogenesis. These include the Notch, Wnt/β-catenin, bone morphogenic proteins (Bmp) and Sonic Hedgehog (Shh) pathways. In this review, we highlight the function of these pathways in the growth of the cerebellum and the formation of MB. A better understanding of the developmental origins of these tumors will have significant implications for enhancing the treatment of this important childhood cancer.

Mary E Hatten, Martine F Roussel

Cerebellum development and medulloblastoma.

In the last 20 years, it has become clear that developmental genes and their regulators, noncoding RNAs including microRNAs and long-noncoding RNAs, within signaling pathways play a critical role in the pathogenesis of cancer. Many of these pathways were first identified in genetic screens in Drosophila and other lower organisms. Mammalian orthologs were subsequently identified and genes within the pathways cloned and found to regulate cell growth. Genes and pathways expressed during embryonic development, including the Notch, Wnt/β-Catenin, TGF-β/BMP, Shh/Patched, and Hippo pathways are mutated, lost, or aberrantly regulated in a wide variety of human cancers, including skin, breast, blood, and brain cancers, including medulloblastoma. These biochemical pathways affect cell fate determination, axis formation, and patterning during development and regulate tissue homeostasis and regeneration in adults. Medulloblastoma, the most common malignant nervous system tumor in childhood, are thought to arise from disruptions in cerebellar development [reviewed by Marino, S. (2005)]. Defining the extracellular cues and intracellular signaling pathways that control cerebellar neurogenesis, especially granule cell progenitor (GCP) proliferation and differentiation has been useful for developing models to unravel the mechanisms underlying medulloblastoma formation and growth. In this chapter, we will review the development of the cerebellar cortex, highlighting signaling pathways of potential relevance to tumorigenesis.

Martine F Roussel, Mary E Hatten

Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration.

Glial-guided neuronal migration is a key step in the development of laminar architecture of cortical regions of the mammalian brain. We previously reported that neuronal protein astrotactin (ASTN1) functions as a neuron-glial ligand during CNS glial-guided migration. Here, we identify a new Astn family member, Astn2, that is expressed at high levels in migrating, cerebellar granule neurons, along with Astn1, at developmental stages when glial-guided migration is ongoing. Biochemical and flow cytometry experiments show that ASTN2 forms a complex with ASTN1 and regulates surface expression of ASTN1. Live imaging of Venus-tagged ASTN1 in migrating cerebellar granule cells reveals the intracellular trafficking of ASTN1-Venus, with ASTN1-Venus accumulating in the forward aspect of the leading process where new sites of adhesion will form. Treatment of migrating neurons with Dynasore, a soluble noncompetitive inhibitor of Dynamin, rapidly arrests the migration of immature granule cells in a reversible manner, suggesting the critical importance of receptor trafficking to neuronal locomotion along Bergmann glial fibers in the developing cerebellum. Together, these findings suggest that ASTN2 regulates the levels of ASTN1 in the plasma membrane and that the release of neuronal adhesions to the glial fiber during neuronal locomotion involves the intracellular trafficking of ASTN1.

Perrin M Wilson, Robert H Fryer, Yin Fang, Mary E Hatten

Differential 3' Processing of Specific Transcripts Expands Regulatory and Protein Diversity Across Neuronal Cell Types.

Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3'UTR length. We characterize , a transcript that shifted from expressing a short 3'UTR isoform to a longer one during granule cell differentiation. We show that regulates granule cell precursor proliferation and that its long 3'UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies.

Saša Jereb, Hun-Way Hwang, Eric Van Otterloo, Eve-Ellen Govek, John J Fak, Yuan Yuan, Mary E Hatten, Robert B Darnell