Search result for : author:rüdiger j seitz

Total 7 result(s) found

Cytoarchitecture, probability maps, and functions of the human supplementary and pre-supplementary motor areas.

The dorsal  mesial frontal cortex contains the supplementary motor area (SMA) and the pre-supplementary motor area (pre-SMA), which play an important role in action and cognition. Evidence from cytoarchitectonic, stimulation, and functional studies suggests structural and functional divergence between the two subregions. However, a microstructural map of these areas obtained in a representative sample of brains in a stereotaxic reference space is still lacking. In the present study we show that the dorsal mesial frontal motor cortex comprises two microstructurally different brain regions: area SMA and area pre-SMA. Area-specific cytoarchitectonic patterns were studied in serial histological sections stained for cell bodies of ten human postmortem brains. Borders of the two cortical areas were identified using image analysis and statistical features. The 3D reconstructed areas were transferred to a common reference space, and probabilistic maps were calculated by superimposing the individual maps. A coordinate-based meta-analysis of functional imaging data was subsequently performed using the two probabilistic maps as microstructurally defined seed regions. It revealed that areas SMA and pre-SMA were strongly co-activated with areas in precentral, supramarginal and superior frontal gyri, Rolandic operculum, thalamus, putamen and cerebellum. Both areas were related to motor functions, but area pre-SMA was involved in more complex processes such as learning, cognitive processes and perception. The here described subsequent analyses led to converging evidence supporting the microstructural, and functional segregation of areas SMA and pre-SMA, and maps will be made available to the scientific community to further elucidate the microstructural substrates of motor and cognitive control.

Jianghai Ruan, Sebastian Bludau, Nicola Palomero-Gallagher, Svenja Caspers, Hartmut Mohlberg, Simon B Eickhoff, Rüdiger J Seitz, Katrin Amunts
0

Handedness and functional MRI-activation patterns in sentence processing.

We investigate differences of cerebral activation in 12 right-handed and left-handed participants, respectively, using a sentence-processing task. Functional MRI shows activation of left-frontal and inferior-parietal speech areas (BA 44, BA9, BA 40) in both groups, but a stronger bilateral activation in left-handers. Direct group comparison reveals a stronger activation in right-frontal cortex (BA 47, BA 6) and left cerebellum in left-handers. Laterality indices for the inferior-frontal cortex are less asymmetric in left-handers and are not related to the degree of handedness. Thus, our results show that sentence-processing induced enhanced activation involving a bilateral network in left-handed participants.

Silke Jörgens, Raimund Kleiser, Peter Indefrey, Rüdiger J Seitz
0

Pathological crying induced by deep brain stimulation.

Pathological crying (PLC)--an affective gesture without any or an adequate emotion--occurs with various diseases. A recent theory suggests that PLC is caused by a disruption of higher order cortical association areas from the cerebellum which computes profiles of psychomotor responses. We report a patient with Parkinson's disease who developed PLC during stimulation of the subthalamic nucleus (STN) predominantly of the right hemisphere. Positron emission tomography imaging showed thalamo-ponto-cerebellar activation during such stimulation. These findings indicate that the STN and possibly also ponto-cerebellar pathways are involved in psychomotor control and in the modulation of PLC.

Lars Wojtecki, Janpeter Nickel, Lars Timmermann, Mohammad Maarouf, Martin Südmeyer, Frank Schneider, Rüdiger J Seitz, Jürgen Voges, Volker Sturm, Alfons Schnitzler
0

Bimanual recoupling by visual cueing in callosal disconnection.

The cerebral control of bimanual movements is not completely understood. We investigated a 59-year-old, right-handed man who presented with an acute bimanual coordination deficit. Magnetic resonance imaging showed a lesion involving the entire corpus callosum, which was found on stereotactic biopsy to be an ischemic infarct. Paired-pulse transcranial magnetic stimulation indicated that the patient had a lack of interhemispheric inhibition, while intracortical inhibition in motor cortex of either side was normal. Functional magnetic resonance imaging showed activation of the left SMA, the bilateral motor cortex and anterior cerebellum during spontaneous bimanual thumb-index oppositions, which were uncoupled as evident from simultaneous electromyographic recordings. In contrast, when the bimanual thumb-index oppositions were cued by a visual stimulus, the movements of both hands were tightly correlated. This synchronized activity was accompanied by additional activations bilateral in lateral occipital cortex, dorsal premotor cortex and cerebellum. The data suggest that the visually cued movements of both hands were recoupled by action of a bihemispheric motor network.

Rüdiger J Seitz, Raimund Kleiser, Cathrin M Bütefisch, Silke Jörgens, Oliver Neuhaus, Hans-Peter Hartung, Hans-Jörg Wittsack, Volker Sturm, Manuel M Hermann
0

Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study.

What mechanisms allow us to direct a precise saccade to a remembered target position in space? The cerebellum has been proposed to be involved not only in motor and oculomotor control, but also in perceptual and cognitive functions. We used functional MRI (Echoplanar imaging at 1.5 T) to investigate the role of the cerebellum in the control of externally triggered and internally generated saccadic eye movements of high and low memory impact, in six healthy volunteers. Memory-guided saccades to remembered locations of 3 targets (triple-step saccades) in contrast to either central fixation or to visually guided saccades activated the cerebellar hemispheres predominantly within lobuli VI-crus I. The same areas were activated when an analogous visuospatial working memory task was contrasted to the triple-step saccades. Visually guided saccades activated the posterior vermis and the triple-step saccades, contrasted to the working memory task, activated predominantly the posterior vermis and paravermal regions. Our data confirm the primary involvement of the posterior vermis for visually-triggered saccadic eye movements and present novel evidence for a role of the cerebellar hemispheres in the mnemonic and visuospatial control of memory-guided saccades.

Matthias F Nitschke, Ferdinand Binkofski, Giovanni Buccino, Stefan Posse, Christian Erdmann, Detlef Kömpf, Rüdiger J Seitz, Wolfgang Heide
0

A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study.

Previous studies of somatosensory object discrimination have been focused on the primary and secondary sensorimotor cortices. However, we expected the prefrontal cortex to also become involved in sequential tactile discrimination on the basis of its role in working memory and stimulus discrimination as established in other domains. To investigate the contributions of the different cerebral structures to tactile discrimination of sequentially presented objects, we obtained event-related functional magnetic resonance images from seven healthy volunteers. Our results show that right hand object exploration involved left sensorimotor cortices, bilateral premotor, parietal and temporal cortex, putamen, thalamus, and cerebellum. Tactile exploration of parallelepipeds for subsequent object discrimination activated further areas in the dorsal and ventral portions of the premotor cortex, as well as parietal, midtemporal, and occipital areas of both cerebral hemispheres. Discriminating a parallelepiped from the preceding one involved a bilateral prefrontal-anterior cingulate-superior temporal-posterior parietal circuit. While the prefrontal cortex was active with right hemisphere dominance during discrimination, there was left hemispheric prefrontal activation during the delay period between object presentations. Delay related activity was further seen in the anterior intraparietal area and the fusiform gyrus. The results reveal a prominent role of the human prefrontal cortex for somatosensory object discrimination in correspondence with recent models on stimulus discrimination and working memory.

M Cornelia Stoeckel, Bruno Weder, Ferdinand Binkofski, Giovanni Buccino, N Jon Shah, Rüdiger J Seitz
0

An fMRI study of training voluntary smooth circular eye movements.

Despite a large number of recent studies, the promise of fMRI methods to produce valuable insights into motor skill learning has been restricted to sequence learning paradigms, or manual training paradigms where a relatively advanced capacity for sensory-motor integration and effector coordination already exists. We therefore obtained fMRIs from 16 healthy adults trained in a new paradigm that demanded voluntary smooth circular eye movements without a moving target. This aimed to monitor neural activation during two possible motor learning processes: (a) the smooth pursuit control system develops a new perceptual-motor relationship and successfully becomes involved in voluntary action in which it is not normally involved or (b) the saccadic system normally used for voluntary eye movement and which only exhibits linear action skill develops new dynamic coordinative control capable of smooth circular movement. Participants were able to improve within half an hour, typically demonstrating saccadic movement with progressively reduced amplitudes, which better approximated smooth circular movement. Activity in the inferior premotor cortex was significantly modulated and decreased during the progress of learning. In contrast, activations in dorsal premotor and parietal cortex along the intraparietal sulcus, the supplementary eye field and the anterior cerebellum did not change during training. Thus, the decrease of activity in inferior premotor cortex was critically related to the learning progress in visuospatial eye movement control.

Raimund Kleiser, Cornelia Stadler, Sibylle Wimmer, Thomas Matyas, Rüdiger J Seitz
0

ITEMS YOU SAVED RECENTLY