Search result for : author:rosana mattioli

Total 3 result(s) found

Intracerebellar microinjection of histaminergic compounds on locomotor and exploratory behaviors in mice.

The neural histaminergic system innervates the cerebellum, with a high density of fibers in the vermis and flocculus. The cerebellum participates in motor functions, but the role of the histaminergic system in this function is unclear. In the present study, we investigated the effects of intracerebellar histamine injections and H1, H2 and H3 receptor antagonist injections (chlorpheniramine, ranitidine, and thioperamide, respectively) and H4 receptor agonist (VUF-8430) on locomotor and exploratory behaviors in mice. The cerebellar vermis of male mice was implanted with guide cannula. After three days of recovery,the animals received microinjections of saline or histamine (experiment1), saline or chlorpheniramine (experiment 2), saline or ranitidine(experiment 3), saline or thioperamide (experiment 4), and saline or VUF-8430 (experiment 5) in different concentrations. Five minutes postinjection,the open field test was performed. The data were analyzed using one-way ANOVA and Duncan's post hoc test. The microinjections of histamine, ranitidine or thioperamide did not lead any behavioral effects at the used doses. In contrast, animals that received chlorpheniramine at the highest dose (0.16 nmol) and VUF-8430 at the highest dose (1.48 nmol)were more active in the open field apparatus, with an increase in the number of crossed quadrants, number of rearings and time spent in the central area of the arena, suggesting that chlorpheniramine and VUF-8430 modulates locomotor and exploratory behaviors in mice.

Evelyn M Guilherme, Bruna Silva-Marques, Carlos Eduardo M Fernandes, Thiago L Russo, Rosana Mattioli, Anna C Gianlorenço

Chlorpheniramine impairs spatial choice learning in telencephalon-ablated fish.

This work investigated the effect of the H1 receptor blockade in the forebrain of ablated Carassius auratus in a simple stimulus-response learning task using a T-maze test with positive reinforcement. The goldfish were submitted to surgery for removal of both telencephalic lobes five days before beginning the experiment. A T-shaped glass aquarium was employed, with two feeders located at the extremities of the long arm. One of the two feeders was blocked. The experimental trials were performed in nine consecutive days. Each fish was individually placed in the short arm and confined there for thirty seconds, then it was allowed to swim through the aquarium to search for food for ten minutes (maximum period). Time to find food was analysed in seconds. Animals were injected intraperitoneally with chlorpheniramine (CPA) at 16 mg/kg of body weight or saline after every trial, ten minutes after being placed back in the home aquarium. The results show that all the training latencies of the A-SAL group were higher than the latencies of the S-SAL group. The S-SAL group had decreased latencies from the second trial on, while the S-CPA group showed decreased latencies after the fourth trial. The A-SAL group showed reduced latencies after the fifth trial, but the A-CPA group maintained the latencies throughout the experiment. This suggests that CPA impairs the consolidation of learning both on telencephalon ablated animals and in sham-operated ones through its action on mesencephalic structures of the brain and/or on the cerebellum in teleost fish.

Fernanda Romaguera, Rosana Mattioli

Intracerebellar vermis histamine facilitates memory consolidation in the elevated T maze model.

Experimental evidence suggests that the cerebellum plays a more complex role in learning than simply regulating the motor response. Rather, it is thought to play a significant role in the consolidation of emotional memory in mice. Due to the difficulty of interpreting fear and anxiety behaviors-the standard methodology for the study of the histaminergic system and emotional memory-in mice, we propose a behavioral assessment of mice subjected to the Elevated T-maze after histamine microinjection of the cerebellar vermis. Young male Swiss albino mice weighing 25-35g were used. In addition, locomotor activity was tested in an open field test. Our data suggest that histamine did not affect memory consolidation during escape or open field behavior at the doses used in this study. However, we observed a significant increase in inhibitory avoidance on the second day in animals receiving a dose of 6.8nmol/0.5μl, suggesting that histamine facilitates the consolidation of inhibitory avoidance in mice.

Bruna Silva-Marques, Anna Carolyna Lepesteur Gianlorenço, Rosana Mattioli