Search result for : author:vinicius stone

Total 2 result(s) found

Effect of maternal antioxidant supplementation and/or exercise practice during pregnancy on postnatal overnutrition induced by litter size reduction: Brain redox homeostasis at weaning.

Prenatal and early postnatal environments can permanently influence health throughout life. Early overnutrition increases the risk to develop chronic diseases. Conversely, the intake of flavonoids and exercise practice during pregnancy seem to promote long-term benefits to offspring. We hypothesized that benefic interventions during pregnancy could protect against possible postnatal neurochemical alterations caused by overnutrition induced by reduced litter size. Female Wistar rats were divided into four groups: (1) sedentary + vehicle, (2) sedentary + naringenin, (3) swimming exercise + vehicle, and (4) swimming exercise + naringenin. One day after birth, the litter was culled to 8 pups (control) or 3 pups (overfed) per dam, yielding control and overfed subgroups for each maternal group. Serum of 21-days-old pups was collected, also the cerebellum, hippocampus, and hypothalamus were dissected. Litter size reduction increased fat mass and enhanced body weight. Maternal interventions, when isolated, caused reduced glucose serum levels in offspring nurtured in control litters. In the cerebellum, reducing the litter size decreased the activity of thioredoxin reductase, which was prevented by maternal supplementation with naringenin. Hippocampus and hypothalamus have shown altered antioxidant enzymes activities in response to litter size reduction. Interestingly, when maternal exercise and naringenin supplementation were allied, the effect disappeared, suggesting a concurrent effect of the two maternal interventions. In conclusion, exercise or naringenin supplementation during pregnancy can be important interventions for combating the increasing rates of overweight during the infancy and its related neurochemical changes, especially when applied isolated.

Pauline Maciel August, Rafael Moura Maurmann, André Brum Saccomori, Mariana Crestani Scortegagna, Eduardo Borges Flores, Caroline Peres Klein, Bernardo Gindri Dos Santos, Vinicius Stone, Bárbara Mariño Dal Magro, Leo Cristhian, Carolina Nunes Santo, Régis
0

Food restriction during pregnancy alters brain's antioxidant network in dams and their offspring.

Dietary restriction increases life span and protects distinct organisms against a series of diseases, among which, those related to oxidative stress, like neurodegenerative diseases. Interferences in the maternal environment are known to reprogram the offspring metabolism response, impacting in the risk of chronic diseases development in adulthood. We aimed to assess the effects of 40% food restriction on reactive species levels, enzymatic and non-enzymatic antioxidant defenses, and oxidative damage parameters in the cerebellum and total cerebral cortex of pregnant rats and their offspring. Dams and pups showed oxidative modulation caused by food restriction in both structures. Dichlorofluorescein oxidation, reflecting reactive species levels, was reduced in the cerebellum of dams and offspring, while the cerebral cortex was not affected. Decreased mitochondrial superoxide levels were found in the cerebellum and cerebral cortex of pups, while nitric oxide was increased in the cortex. We also measured the activities of important antioxidant enzymes responsible by reactive oxygen species elimination. Superoxide dismutase activity was increased in the cerebellum of dams and in both structures of pups, while it was decreased in dams' cerebral cortex. Both brain structures were affected concerning to catalase, glutathione peroxidase, and glutaredoxin activities, which were reduced in pups and dams. Non-enzymatic defenses were decreased in pups, while dams showed an adaptive pattern in the cerebellum and no alteration in the cerebral cortex. Even though the results suggest increased oxidative status, lipids and proteins were not oxidatively affected. Our data suggest that intrauterine food restriction may disrupt oxidative status, impairing the antioxidant network.

Vinícius Stone, Pauline M August, Daniela P Stocher, Caroline P Klein, Pablo R G Couto, Yasmini D Silva, João P Sagini, Tiago B Salomon, Mara S Benfato, Cristiane Matté
0

ITEMS YOU SAVED RECENTLY