Search result for : author:william p dillon

Total 3 result(s) found

Abnormal Morphology of Select Cortical and Subcortical Regions in Neurofibromatosis Type 1.

Purpose To evaluate whether patients with neurofibromatosis type 1 (NF1)-a multisystem neurodevelopmental disorder with myriad imaging manifestations, including focal transient myelin vacuolization within the deep gray nuclei, brainstem, and cerebellum-exhibit differences in cortical and subcortical structures, particularly in subcortical regions where these abnormalities manifest. Materials and Methods In this retrospective study, by using clinically obtained three-dimensional T1-weighted MR images and established image analysis methods, 10 intracranial volume-corrected subcortical and 34 cortical regions of interest (ROIs) were quantitatively assessed in 32 patients with NF1 and 245 age- and sex-matched healthy control subjects. By using linear models, ROI cortical thicknesses and volumes were compared between patients with NF1 and control subjects, as a function of age. With hierarchic cluster analysis and partial correlations, differences in the pattern of association between cortical and subcortical ROI volumes in patients with NF1 and control subjects were also evaluated. Results Patients with NF1 exhibited larger subcortical volumes and thicker cortices of select regions, particularly the hippocampi, amygdalae, cerebellar white matter, ventral diencephalon, thalami, and occipital cortices. For the thalami and pallida and 22 cortical ROIs in patients with NF1, a significant inverse association between volume and age was found, suggesting that volumes decrease with increasing age. Moreover, compared with those in control subjects, ROIs in patients with NF1 exhibited a distinct pattern of clustering and partial correlations. Discussion Neurofibromatosis type 1 is characterized by larger subcortical volumes and thicker cortices of select structures. Most apparent within the hippocampi, amygdalae, cerebellar white matter, ventral diencephalon, thalami and occipital cortices, these neurofibromatosis type 1-associated volumetric changes may, in part, be age dependent.

Matthew J Barkovich, Chin Hong Tan, Ryan M Nillo, Yi Li, Duan Xu, Christine M Glastonbury, Orit A Glenn, William P Dillon, Christopher P Hess, Sabine Mueller, Cassie Kline, Anders M Dale, Terry L Jernigan, Leo P Sugrue, A James Barkovich, Rahul S Desikan

Regionally specific TSC1 and TSC2 gene expression in tuberous sclerosis complex.

Tuberous sclerosis complex (TSC), a heritable neurodevelopmental disorder, is caused by mutations in the TSC1 or TSC2 genes. To date, there has been little work to elucidate regional TSC1 and TSC2 gene expression within the human brain, how it changes with age, and how it may influence disease. Using a publicly available microarray dataset, we found that TSC1 and TSC2 gene expression was highest within the adult neo-cerebellum and that this pattern of increased cerebellar expression was maintained throughout postnatal development. During mid-gestational fetal development, however, TSC1 and TSC2 expression was highest in the cortical plate. Using a bioinformatics approach to explore protein and genetic interactions, we confirmed extensive connections between TSC1/TSC2 and the other genes that comprise the mammalian target of rapamycin (mTOR) pathway, and show that the mTOR pathway genes with the highest connectivity are also selectively expressed within the cerebellum. Finally, compared to age-matched controls, we found increased cerebellar volumes in pediatric TSC patients without current exposure to antiepileptic drugs. Considered together, these findings suggest that the cerebellum may play a central role in TSC pathogenesis and may contribute to the cognitive impairment, including the high incidence of autism spectrum disorder, observed in the TSC population.

Yi Li, Matthew J Barkovich, Celeste M Karch, Ryan M Nillo, Chun-Chieh Fan, Iris J Broce, Chin Hong Tan, Daniel Cuneo, Christopher P Hess, William P Dillon, Orit A Glenn, Christine M Glastonbury, Nicholas Olney, Jennifer S Yokoyama, Luke W Bonham, Bruce Mi

Human growth hormone-related iatrogenic Creutzfeldt-Jakob disease with abnormal imaging.

Although more than 160 cases of iatrogenic Creutzfeldt-Jakob disease (iCJD) from human growth hormone (hGH) treatment have been documented, to our knowledge abnormal cerebellar findings on magnetic resonance imaging (MRI) have not been reported. To report a case of hGH-related iCJD with abnormal cerebellar MRI findings on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted MRI (DWI). Case report. Outpatient neurology clinic at a university medical center. A 33-year old man who had subacute gait ataxia and blurred vision. Beginning 19 years prior, this patient had received cadaveric pituitary-derived hGH treatment for at least 5 years. Magnetic resonance imaging revealed FLAIR and DWI abnormalities, particularly in the cerebellum. He died 7 months after disease onset of autopsy-confirmed iCJD. Pathological changes corresponded largely to MRI findings. To our knowledge, this is the first case of hGH-related iCJD with FLAIR and DWI abnormalities within the cerebellum. As symptoms referable to the cerebellum occur early in iCJD, it suggests that these MRI sequences may allow earlier diagnosis of this form of prion disease.

Aaron M Lewis, Melissa Yu, Stephen J DeArmond, William P Dillon, Bruce L Miller, Michael D Geschwind