Search result for : author:yi li

Total 47 result(s) found

Abnormal Morphology of Select Cortical and Subcortical Regions in Neurofibromatosis Type 1.

Purpose To evaluate whether patients with neurofibromatosis type 1 (NF1)-a multisystem neurodevelopmental disorder with myriad imaging manifestations, including focal transient myelin vacuolization within the deep gray nuclei, brainstem, and cerebellum-exhibit differences in cortical and subcortical structures, particularly in subcortical regions where these abnormalities manifest. Materials and Methods In this retrospective study, by using clinically obtained three-dimensional T1-weighted MR images and established image analysis methods, 10 intracranial volume-corrected subcortical and 34 cortical regions of interest (ROIs) were quantitatively assessed in 32 patients with NF1 and 245 age- and sex-matched healthy control subjects. By using linear models, ROI cortical thicknesses and volumes were compared between patients with NF1 and control subjects, as a function of age. With hierarchic cluster analysis and partial correlations, differences in the pattern of association between cortical and subcortical ROI volumes in patients with NF1 and control subjects were also evaluated. Results Patients with NF1 exhibited larger subcortical volumes and thicker cortices of select regions, particularly the hippocampi, amygdalae, cerebellar white matter, ventral diencephalon, thalami, and occipital cortices. For the thalami and pallida and 22 cortical ROIs in patients with NF1, a significant inverse association between volume and age was found, suggesting that volumes decrease with increasing age. Moreover, compared with those in control subjects, ROIs in patients with NF1 exhibited a distinct pattern of clustering and partial correlations. Discussion Neurofibromatosis type 1 is characterized by larger subcortical volumes and thicker cortices of select structures. Most apparent within the hippocampi, amygdalae, cerebellar white matter, ventral diencephalon, thalami and occipital cortices, these neurofibromatosis type 1-associated volumetric changes may, in part, be age dependent.

Matthew J Barkovich, Chin Hong Tan, Ryan M Nillo, Yi Li, Duan Xu, Christine M Glastonbury, Orit A Glenn, William P Dillon, Christopher P Hess, Sabine Mueller, Cassie Kline, Anders M Dale, Terry L Jernigan, Leo P Sugrue, A James Barkovich, Rahul S Desikan
0

Regionally specific TSC1 and TSC2 gene expression in tuberous sclerosis complex.

Tuberous sclerosis complex (TSC), a heritable neurodevelopmental disorder, is caused by mutations in the TSC1 or TSC2 genes. To date, there has been little work to elucidate regional TSC1 and TSC2 gene expression within the human brain, how it changes with age, and how it may influence disease. Using a publicly available microarray dataset, we found that TSC1 and TSC2 gene expression was highest within the adult neo-cerebellum and that this pattern of increased cerebellar expression was maintained throughout postnatal development. During mid-gestational fetal development, however, TSC1 and TSC2 expression was highest in the cortical plate. Using a bioinformatics approach to explore protein and genetic interactions, we confirmed extensive connections between TSC1/TSC2 and the other genes that comprise the mammalian target of rapamycin (mTOR) pathway, and show that the mTOR pathway genes with the highest connectivity are also selectively expressed within the cerebellum. Finally, compared to age-matched controls, we found increased cerebellar volumes in pediatric TSC patients without current exposure to antiepileptic drugs. Considered together, these findings suggest that the cerebellum may play a central role in TSC pathogenesis and may contribute to the cognitive impairment, including the high incidence of autism spectrum disorder, observed in the TSC population.

Yi Li, Matthew J Barkovich, Celeste M Karch, Ryan M Nillo, Chun-Chieh Fan, Iris J Broce, Chin Hong Tan, Daniel Cuneo, Christopher P Hess, William P Dillon, Orit A Glenn, Christine M Glastonbury, Nicholas Olney, Jennifer S Yokoyama, Luke W Bonham, Bruce Mi
0

Characterization of trans-neuronal trafficking of Cbln1.

Cbln1, a glycoprotein secreted from granule cells and GluRdelta2 in the postsynaptic densities of Purkinje cells are components of an incompletely understood pathway essential for integrity and plasticity of parallel fiber-Purkinje cell synapses. We show that Cbln1 undergoes anterograde transport from granule cells to Purkinje cells and Bergmann glia, and enters the endolysosomal trafficking system, raising the possibility that Cbln1 exerts its activity on or within Purkinje cells and Bergmann glia. Cbln1 is absent in Purkinje cells and Bergmann glia of GluRdelta2-null mice, suggesting a mechanistic convergence on Cbln1 trafficking. Ectopic expression of Cbln1 in Purkinje cells of L7-cbln1 transgenic mice reveals Cbln1 undergoes anterograde and retrograde trans-neuronal trafficking even across synapses that lack GluRDelta2, indicating that it is not universally essential for Cbln1 transport. The L7-cbln1 transgene also ameliorates the locomotor deficits of cbln1-null mice, indicating that the presence and/or release of Cbln1 from the postsynaptic neuron has functional consequences.

Peng Wei, Yongqi Rong, Leyi Li, Dashi Bao, James I Morgan
0

Role of DNA topoisomerase IIbeta in neurite outgrowth.

Failure to establish neuromuscular junctions is a major phenotype of top2beta knockout mice. However, the precise mechanism for this defect is not known. In the current study, we have investigated the role of TopIIbeta in cultured neurons. We showed that the TopII inhibitor ICRF-193 significantly blocked neurite outgrowth and growth cone formation in cultured cerebellar granule neurons (CGNs), dorsal root ganglions (DRGs) and cortical neurons (CNs). In addition, ICRF-193 also blocked neurite outgrowth and growth cone formation of PC12 cells undergoing NGF-induced differentiation. Isolated cortical neurons from top2beta knockout embryos elaborated shorter neurites than did those from their wild type counterparts, confirming the role of TopIIbeta in neurite outgrowth. Together, these results demonstrate a critical role of TopIIbeta in neurite outgrowth in cultured neurons. Furthermore, we demonstrated that neurons derived from top2beta knockout mice failed to form contacts with muscle cells in co-cultures. These results suggest that the defect in establishing neuromuscular junctions in top2beta knockout mice could be due to the lack of TopIIbeta-mediated neurite outgrowth.

Alam Nur-E-Kamal, Sally Meiners, Ijaz Ahmed, Anna Azarova, Chao-po Lin, Yi Lisa Lyu, Leroy F Liu
0

The carboxypeptidase-like substrate-binding site in Nna1 is essential for the rescue of the Purkinje cell degeneration (pcd) phenotype.

The Purkinje cell degeneration (pcd) phenotype is characterized by adult onset neurodegeneration resulting from mutations in Nna1, a gene encoding an intracellular protein with a putative metallocarboxypeptidase domain. As Nna1 is also induced in axotomized motor neurons, the elucidation of its function can shed light on previously unsuspected mechanisms common to degenerative and regenerative responses. Structural modeling revealed that Nna1 and three related gene products constitute a new subfamily of metallocarboxypeptidases with a distinctive substrate-binding site. To test whether the metallocarboxypeptidase domain is functionally essential, transgenic mice were generated that expressed Nna1 or a substrate-binding site mutant of Nna1 selectively in Purkinje cells using the L7/pcp2 promoter. When bred onto a homozygous pcd(3J) background, wild type but not mutant Nna1 rescued ataxic behavior and Purkinje cell loss. Therefore, loss of Nna1 in Purkinje cells leads directly to their degeneration and Nna1's carboxypeptidase domain is essential for survival of these neurons.

Taiyu Wang, Jennifer Parris, Leyi Li, James I Morgan
0

Brain-specific BNIP-2-homology protein Caytaxin relocalises glutaminase to neurite terminals and reduces glutamate levels.

Human Cayman ataxia and mouse or rat dystonia are linked to mutations in the genes ATCAY (Atcay) that encode BNIP-H or Caytaxin, a brain-specific member of the BNIP-2 family. To explore its possible role(s) in neuronal function, we used protein precipitation and matrix-assisted laser desorption/ionisation mass spectrometry and identified kidney-type glutaminase (KGA) as a novel partner of BNIP-H. KGA converts glutamine to glutamate, which could serve as an important source of neurotransmitter. Co-immunoprecipitation with specific BNIP-H antibody confirmed that endogenous BNIP-H and KGA form a physiological complex in the brain, whereas binding studies showed that they interact with each other directly. Immunohistochemistry and in situ hybridisation revealed high BNIP-H expression in hippocampus and cerebellum, broadly overlapping with the expression pattern previously reported for KGA. Significantly, BNIP-H expression was activated in differentiating neurons of the embryonic carcinoma cell line P19 whereas its overexpression in rat pheochromocytoma PC12 cells relocalised KGA from the mitochondria to neurite terminals. It also reduced the steady-state levels of glutamate by inhibiting KGA enzyme activity. These results strongly suggest that through binding to KGA, BNIP-H could regulate glutamate synthesis at synapses during neurotransmission. Thus, loss of BNIP-H function could render glutamate excitotoxicity or/and deregulated glutamatergic activation, leading to ataxia, dystonia or other neurological disorders.

Jan Paul Buschdorf, Li Li Chew, Bin Zhang, Qiong Cao, Feng-Yi Liang, Yih-Cherng Liou, Yi Ting Zhou, Boon Chuan Low
0

Failure of transdifferentiation of adult hematopoietic stem cells into neurons.

Previous studies of bone marrow-derived stem cell transdifferentiation into neurons have not involved purified cell populations and determined their exact phenotype prior to differentiation. The present study investigates whether highly purified mouse adult hematopoietic stem cells (HSCs), characterized by lineage marker depletion and expression of the cell surface markers Sca1 and c-Kit (Lin(-) Sca1(+) c-Kit(+) [LSK]), can be stimulated to adopt a neuronal fate. When the HSC(LSK) cells were cultured in vitro in neuronal differentiation medium supplemented with retinoic acid, 50% of the cells expressed the neural progenitor marker nestin and no cells had become postmitotic. Electrophysiological recordings on neuron-like cells showed that these cells were incapable of generating action potentials. When the HSC(LSK) cells either were grown in vitro together with neural precursor cells or were transplanted into the striatum or cerebellum of wild-type mouse, they either differentiated into Iba1-immunopositive macrophage/microglia or died. In conclusion, we demonstrate that adult HSC(LSK) cells do not have the capacity to leave the hematopoietic lineage and differentiate into neurons.

Laurent Roybon, Zhi Ma, Fredrik Asztely, Anna Fosum, Sten Eirik W Jacobsen, Patrik Brundin, Jia-Yi Li
0

Cbln1 is essential for synaptic integrity and plasticity in the cerebellum.

Cbln1 is a cerebellum-specific protein of previously unknown function that is structurally related to the C1q and tumor necrosis factor families of proteins. We show that Cbln1 is a glycoprotein secreted from cerebellar granule cells that is essential for three processes in cerebellar Purkinje cells: the matching and maintenance of pre- and postsynaptic elements at parallel fiber-Purkinje cell synapses, the establishment of the proper pattern of climbing fiber-Purkinje cell innervation, and induction of long-term depression at parallel fiber-Purkinje cell synapses. Notably, the phenotype of cbln1-null mice mimics loss-of-function mutations in the orphan glutamate receptor, GluR delta2, a gene selectively expressed in Purkinje neurons. Therefore, Cbln1 secreted from presynaptic granule cells may be a component of a transneuronal signaling pathway that controls synaptic structure and plasticity.

Hirokazu Hirai, Zhen Pang, Dashi Bao, Taisuke Miyazaki, Leyi Li, Eriko Miura, Jennifer Parris, Yongqi Rong, Masahiko Watanabe, Michisuke Yuzaki, James I Morgan
0

[Serious complications of the microvascular decompression in cerebellopontine angle].

To report the serious complications of microvascular decompression and (or) selective neurectomy in cerebellopontine angle. To review 322 cases of microvascular decompression and (or) facial nerve splitting, selective neurectomy for hemifacial spasm, trigeminal neuralgia and glossopharyngeal neuralgia respectively. Among 322 cases, hemifacial spasm 164, which 96 underwent facial nerve splitting, 68 underwent microvascular decompression and facial nerve splitting. The selective neurectomy and neurectomy were performed in 128 cases of trigeminal neuralgia and 30 cases for glossopharyngeal neuralgia respectively. Of the serious complications 2 died (0.6%), The mild to severe hearing impairment occurred in 21 cases (6.5%), in which 3 cases presented total hearing loss (0. 9%); Postoperative cerebellospinal leakage in 20 (6. 2%). It was demonstrated that, even though the microvascular decompression and /or neurectomy was a safe procedure for posterior neuropathy, mortal and serious complications might occur. It was essential to pay great attention to the entire decompression procedure in avoiding cerebellar injury. Using of intraoperative ABR and avoiding of impairment of the acoustic nerve might contribute to the prevention of the postoperative hearing loss.

Hai-Bo Wang, Zhao-Min Fan, Jie Han, Ke-Yi Li, Zhong Fan
0

Abundant expression of zinc transporters in Bergman glia of mouse cerebellum.

Zinc transporters (ZnTs) are membrane proteins involved in zinc ion transportation in mammalian cells. Seven members of ZnT family, ZnT1-7, have been cloned and characterized. These transporter proteins have different cellular and sub-cellular locations, suggesting that they may play different roles in zinc homeostasis in normal and pathological conditions in different tissues. Cerebellum is one of the most zinc-enriched regions in the central nervous system, but little is known about zinc metabolism in the cerebellum. In the present study, we investigated the detailed distributions of four members (ZnT1, ZnT3, ZnT4 and ZnT6) of the ZnT family, in the mouse cerebellum. Immunostaining and confocal microscopic observations revealed a similar staining pattern of ZnTs in the molecular layer and the Purkinje cell layer. Double labeling with anti-S-100beta or anti-MAP2 and anti-ZnTs clearly showed that the Bergman glial cell bodies in the Purkinje cell layer and their radial processes in the molecular layer exhibited strong immunofluorescence of all the tested ZnTs. However, the somata of the Purkinje cells contained a moderate immunostaining for ZnT1, but virtually lack of other three ZnTs. In the granular layer, ZnTs appeared with different immunostaining patterns. ZnT1 was expressed in a small number of neuronal cell bodies and their primary dendrites, whereas ZnT3 and ZnT4 were present in nerve terminals but not in the neuronal somata. ZnT6 was undetectable in either the cell bodies or processes in the granular layer. The present results indicate that the Bergman glial cells may play an important role in zinc metabolism in the mouse cerebellar cortex.

Zhan-You Wang, Meredin Stoltenberg, Liping Huang, Gorm Danscher, Annica Dahlström, Yuxiu Shi, Jia-Yi Li
0

Organ-specific expression of the lacZ gene controlled by the opsin promoter after intravenous gene administration in adult mice.

The tissue-specific expression of an exogenous gene, under the influence of a tissue-specific promoter, has been examined in the past with pro-nuclear injections of the transgene and the development of transgenic mouse models. 'Adult transgenics' is possible with the acute expression of an exogenous gene that is administered to adult animals, providing the transgene can be effectively delivered to distant sites following an intravenous administration. The organ specificity of exogenous gene expression in adult mice was examined with a bacterial beta-galactosidase (LacZ) expression plasmid under the influence of the bovine rhodopsin gene promoter. The 8-kb plasmid DNA was delivered to organs following an intravenous administration with the pegylated immunoliposome (PIL) non-viral gene transfer technology. The PIL carrying the gene was targeted to organs with the rat 8D3 monoclonal antibody (MAb) to the mouse transferrin receptor (TfR). The rhodopsin/beta-galactosidase gene was expressed widely in both the eye and the brain of adult mice, but was not expressed in peripheral tissues, including liver, spleen, lung, or heart. Ocular expression included the retinal-pigmented epithelium, the iris, and ciliary body, and brain expression was observed in neuronal structures throughout the cerebrum and cerebellum. The expression of trans-genes in adult animals is possible with the PIL non-viral gene transfer method. The opsin promoter enables tissue-specific gene expression in the eye, as well as the brain of adult mice, whereas gene expression in peripheral tissues, such as liver or spleen, is not observed.

Chunni Zhu, Yun Zhang, Yu-Feng Zhang, Jian Yi Li, Ruben J Boado, William M Pardridge
0

Upregulated expression of neuronal nitric oxide synthase by insulin in both neurons and astrocytes.

Both insulin and nitric oxide (NO) play important roles in the brain. However, there are no unequivocal evidences pointing to a direct effect of insulin on nitric oxide pathway in the brain. In the present study, the effects of insulin on the expression and activity of neuronal nitric oxide synthase (nNOS) were investigated in the cultured cerebellum cell line R2, cerebral cortical astrocytes, and neurons of rats by using flow cytometry, in situ hybridization, RT-PCR, and electron spin resonance (ESR) techniques. In astrocytes, the expression of nNOS was significantly stimulated by insulin in a concentration-dependent manner, with a maximal increase of about 47.6% compared with the control values (p<0.05, t test, n=5). Furthermore, in situ hybridization analysis showed that the expression of nNOS was also significantly increased by insulin (0.64 ng/ml, 6 h), reaching 134.2+/-9.6% of the control values (p<0.05, t test, n=3). In addition, by using nNOS specific primers, RT-PCR analysis also demonstrated the same effect of insulin (0.64 ng/ml, 6 h) on nNOS mRNA expression. Similarly, significant increase of the expression of nNOS protein and mRNA were also observed in both R2 cells and neurons of rats after incubation with insulin. In addition, significant increase of the activity of nNOS in R2 cells and astrocytes were also detected after incubation with insulin (0.64 ng/ml, 9 h) by using ESR technique. Overall, our results suggested that exogenous insulin could upregulate the expression and activity of nNOS in R2 cells, cerebral cortical astrocytes, and neurons of rats. The phenomena opened new insights for further investigation of the physical and pathological significances of insulin in the brain.

Zhong Rui Yuan, BaoYi Liu, Ye Zhang, Lan Yuan, Gulinuer Muteliefu, JingFen Lu
0

[Excitatory postsynaptic potential evoked by stimulation of the ventrolateral region of the cerebellum in crucian carp Mauthner cell].

In the present experiments, the characteristics of the electrical responses to stimulation of the cerebellum in crucian carp Mauthner cell were explored with microeletrode intracellular recording technique. A composite excitatory postsynaptic potential (cerebellum-evoked EPSP) could be induced from the soma, the ventral dendrite and the proximal end of the lateral dendrite in crucian carp Mauthner cell (M-cell) on either side by stimulation of the ventrolateral region of the cerebellum. The cerebellum-evoked EPSP presented characteristics of relatively short latency (0.63+/-0.09 ms), longer duration (5.49+/-1.13 ms), graded amplitude and dependence on stimulation frequency. Stimulation of the cerebellum with higher intensity always activated the M-cell orthodromically. Multiple intracellular recordings showed that the cerebellum-evoked EPSP originated in the distal end of the ventral dendrite. The results suggest that the cerebellum-M-cell pathway is probably composed of a group of neuron chains with different numbers of synaptic relays projecting to the distal end of the ventral dendrite in order of length of the chains.

Ying-Cai Zhang, Shu-Hua Zhang, Xiao-Yi Li, Xue-Hong Tong, Fen Yu, Mao-Xian Zhang
0

CIP98, a novel PDZ domain protein, is expressed in the central nervous system and interacts with calmodulin-dependent serine kinase.

Receptors and various molecules in neurons are localized at precise locations to perform their respective functions, especially in synaptic sites. Among synaptic molecules, PDZ domain proteins play major roles in scaffolding and anchoring membrane proteins for efficient synaptic transmission. In the present study, we isolated CIP98, a novel protein (98 kDa) consisting of three PDZ domains and a proline-rich region, which is widely expressed in the central nervous system. In situ hybridization and immunohistochemical staining patterns demonstrate that CIP98 is expressed strongly in certain types of neurons, i.e. pyramidal cells in layers III-V of the cerebral cortex, projecting neurons in the thalamus and interneurons in the cerebellum. The results of immunocytochemical staining and electron microscopy revealed that CIP98 is localized both in dendrites and axons. Interestingly, CIP98 interacts with CASK (calmodulin-dependent serine kinase), a member of the membrane-associated guanylate kinase (MAGUK) family that plays important roles in the molecular organization of proteins at synapses. CIP98 was shown to co-localize with CASK along the dendritic processes of neurons. In view of its direct association with CASK, CIP98 may be involved in the formation of CASK scaffolding proteins complex to facilitate synaptic transmission in the CNS.

Chan Choo Yap, Fengyi Liang, Yasuhiro Yamazaki, Yuko Muto, Haruo Kishida, Tsuyako Hayashida, Tsutomu Hashikawa, Ryoji Yano
0

Minocycline blocks 6-hydroxydopamine-induced neurotoxicity and free radical production in rat cerebellar granule neurons.

Neurotoxicity induced by 6-hydroxydopamine (6-OHDA) is believed to be due, in part, to the production of reactive oxygen species (ROS). Anti-oxidants by inhibiting free radical generation, protect neurons against 6-OHDA-induced neurotoxicity. In this study, we investigated whether or not minocycline, a neuroprotective compound, could directly protect neurons against 6-OHDA-induced neurotoxicity and inhibit 6-OHDA-induced free radical production in cultured rat cerebellar granule neurons (CGN). We now report that exposure of CGN to 6-OHDA (100 microM) resulted in a significant increase in free radical production with death of 86% of CGN. Pretreatment with minocycline (10 microM) for 2 h prevented 6-OHDA-induced free radical generation and neurotoxicity. Furthermore, minocycline also attenuated H(2)O(2)-induced neurotoxicity. Our results suggest that minocycline blocks 6-OHDA-induced neuronal death possibly by inhibiting 6-OHDA-induced free radical generation in CGN. Both the antioxidative and neuroprotective effects of minocycline may be beneficial in the therapy of Parkinson's disease and other neurodegenerative diseases.

Suizhen Lin, Xing Wei, Yong Xu, Chong Yan, Richard Dodel, Yuqin Zhang, Junyi Liu, James E Klaunig, Martin Farlow, Yansheng Du
0

Interaction of a paraneoplastic cerebellar degeneration-associated neuronal protein with the nuclear helix-loop-helix leucine zipper protein MRG X.

Paraneoplastic cerebellar degeneration-associated antigen PCD17/cdr2 is a neuronal protein expressed predominantly in the cytoplasm of cerebellar Purkinje cells. The biological activities of this protein are not known; however, the presence of a leucine zipper motif in its amino acid sequence suggests that this protein might interact with other proteins harboring a leucine zipper motif. In this study we found by means of a yeast two-hybrid system, ligand overlay assay, and co-immunoprecipitation assay that PCD17 interacts with a nuclear helix-loop-helix leucine zipper protein, MRG X. Overexpression of MRG X in T98G glioblastoma cells by transfection caused abnormal morphological changes in the nucleus and induced cell death. On the other hand, coexpression of PCD17 with MRG X prevented nuclear morphological changes and cell death in T98G cells. MRG X, which is thought to be functionally related to the cell cycle and cell growth, may be regulated by PCD17/cdr2 in Purkinje cells.

Koichiro Sakai, Tomoyasu Shirakawa, Yingyi Li, Yoko Kitagawa, Genjiro Hirose
0

Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) with intracranial Epstein-Barr virus infection: A Case Report.

Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is an inflammatory disorder in the central nervous system (CNS) with distinct clinical, radiological, and pathological features. The pathophysiology of CLIPPERS still remains unclear and the reports are quite few. Although the radiological lesions were reported to be located predominantly in the pons, brachium pontis, and cerebellum, other adjacent structures such as the white matter and spinal cord were very recently reported as involved regions in CLIPPERS. In this study, we report a case of CLIPPERS presenting with intracranial Epstein-Barr virus (EBV) infection and diffuse white matter involvement. A 37-year-old male was diagnosed with mediastinal Hodgkin's lymphoma (lymphocyte predominance type) at the age of 26, and then obtained complete remission after treatment and remained free of relapse for 11 years. He was admitted with 7 months' history of mental disorder, and 20 days' history of gait and limb ataxia, dysphagia, and cough. The diagnosis of CLIPPERS was established based on the findings of punctate and nodular enhancing lesions in the bilateral pons, the basal ganglia, the mid-brain, the pontine brachium, and diffuse white matter in magnetic resonance imaging (MRI), together with CD3 T-lymphocytic inflammatory infiltration in perivascular and parenchymal area revealed by bilateral parietal lobe brain biopsy. Also, our patient exhibited a good response to steroid therapy and remained free of relapse for 5 months. Importantly, we found intracranial Epstein-Barr virus infection in this patient. CLIPPERS might be an autoimmune disorder, and intracranial EBV-infection raises the possibility that EBV-associated autoimmunity is associated with CLIPPERS pathogenesis.

Yue Ma, Xiaolong Sun, Wen Li, Yi Li, Tao Kang, Xiai Yang, Wen Jiang
0

A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification.

The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN). To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs) and intuitionistic fuzzy cross-entropy (IFCE) with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.

Jing Zhao, Lo-Yi Lin, Chih-Min Lin
0

Antiarrhythmic effects and potential mechanism of WenXin KeLi in cardiac Purkinje cells.

Previous studies have demonstrated that WenXin KeLi (WXKL), a traditional Chinese medicine, can exert antiarrhythmic properties through complex multichannel inhibition, but its pharmacologic effect remains to be elucidated, especially in the cardiac conductive system. To explore the antiarrhythmic property of WXKL in cardiac Purkinje cells (PCs). PCs were isolated from rabbit hearts and action potentials (APs) and ion currents were recorded by whole-cell patch clamp technique. Anemonia toxin II (ATX-II) and isoproterenol (ISO) were used to induce early or delayed afterdepolarizations (EADs, DADs) or triggered activities (TAs). WXKL (1 g/L and 5 g/L) significantly abbreviated the action potential duration (APD) of PCs in a dose- and rate-dependent manner. Treatment of PCs with ATX-II (2 nM) prolonged APD and induced EADs, which were significantly suppressed by WXKL. WXKL (1, 5 g/L) also inhibited ISO-induced EADs, DADs, and TAs. To reveal the ionic mechanisms, we studied the effects of WXKL on late sodium current (I(NaL)), peak sodium current (I(NaP)), and L-type calcium currents (ICaL) in PCs. WXKL-attenuated ATX-II (5 nM) induced I(NaL) augmentation and blocked I(NaL) with an IC50 of 4.3 ± 0.5 g/L, which is 3- to 4-fold more selective than that of I(NaP) (13.3 ± 0.9 g/L) and ICaL (17.6 ± 1.4 g/L). Moreover, WXKL exerted significantly less use-dependent block of I(NaP) than that of flecainide, indicating its lower proarrhythmic effect. WXKL exhibits antiarrhythmic properties in cardiac PCs via selective inhibition of I(NaL).

Jian-Wen Hou, Wei Li, Kai Guo, Xiao-Meng Chen, Yi-He Chen, Chang-Yi Li, Bu-Chang Zhao, Jing Zhao, Hong Wang, Yue-Peng Wang, Yi-Gang Li
0

Trio gene is required for mouse learning ability.

Trio is a guanine nucleotide exchange factor with multiple guanine nucleotide exchange factor domains. Trio regulates cytoskeleton dynamics and actin remodeling and is involved in cell migration and axonal guidance in neuronal development. The null allele of the Trio gene led to embryonic lethality, and Trio null embryos displayed aberrant organization in several regions of the brain at E18.5, including hippocampus. Nestin-Trio-/- mice, in which the Trio gene was deleted specifically in the neuronal system by the Nestin-Cre system, displayed severe phenotypes, including low survival rate, ataxia and multiple developmental defects of the cerebellum. All Nestin-Trio-/- mice died before reaching adulthood, which hinders research on Trio gene function in adult mice. Thus, we generated EMX1-Trio-/- mice by crossing Trio-floxed mice with EMX1-Cre mice in which Cre is expressed in the brain cortex and hippocampus. EMX1-Trio-/- mice can survive to adulthood. Trio gene deletion results in smaller brains, an abnormal hippocampus and disordered granule cells in the dentate gyrus (DG) and cornu ammonis (CA). Behavior tests showed that Trio deletion interfered with the hippocampal-dependent spatial learning in the mice, suggesting that Trio plays critical roles in the learning ability of adult mice. We conclude that the Trio gene regulates the neuronal development of the hippocampus and that it affects the intelligence of adult mice.

Wen Zong, Shuoyang Liu, Xiaotong Wang, Jian Zhang, Tingting Zhang, Ziyi Liu, Dongdong Wang, Aizhen Zhang, Minsheng Zhu, Jiangang Gao
0

Effects of anesthetics on vesicular monoamine transporter type 2 binding to ¹⁸F-FP-(+)-DTBZ: a biodistribution study in rat brain.

The in vivo binding analysis of vesicular monoamine transporter type 2 (VMAT2) to radioligand has provided a means of investigating related disorders. Anesthesia is often inevitable when the investigations are performed in animals. In the present study, we tested effects of four commonly-used anesthetics: isoflurane, pentobarbital, chloral hydrate and ketamine, on in vivo VMAT2 binding to (18)F-FP-(+)-DTBZ, a specific VMAT2 radioligand, in rat brain. The transient equilibrium time window for in vivo binding of (18)F-FP-(+)-DTBZ after a bolus injection was firstly determined. The brain biodistribution studies under anesthetized and awake rats were then performed at the equilibrium time. Standard uptake values (SUVs) of the interest brain regions: the striatum (ST), hippocampus (HP), cortex (CX) and cerebellum (CB) were obtained; and ratios of tissue to cerebellum were calculated. Isoflurane and pentobarbital did not alter distribution of (18)F-FP-(+)-DTBZ in the brain relative to the awake group; neither SUVs nor ratios of ST/CB and HP/CB were altered significantly. Chloral hydrate significantly increased SUVs of all the brain regions, but did not significantly alter ratios of ST/CB and HP/CB. Ketamine significantly increased SUVs of the striatum, hippocampus and cortex, and insignificantly increased the SUV of the cerebellum; consequently, ketamine significantly increased ratios of ST/CB and HP/CB. It is concluded that in vivo VMAT2 binding to (18)F-FP-(+)-DTBZ are not altered by isoflurane and pentobarbital, but altered by chloral hydrate and ketamine. Isoflurane and pentobarbital may be promising anesthetic compounds for investigating in vivo VMAT2 binding. Further studies are warranted to investigate the interactions of anesthetics with VMAT2 binding potential with in vivo PET studies.

Zhengping Chen, Jie Tang, Chunyi Liu, Xiaomin Li, Hongbo Huang, Xijie Xu, Huixin Yu
0

Recovery of motor coordination after exercise is correlated to enhancement of brain-derived neurotrophic factor in lactational vanadium-exposed rats.

Lactational exposure to vanadium can reduce the locomotor activity in adult animals. In this study, we investigated whether lactational vanadium exposure impairs the motor coordination and whether exercise ameliorates this dysfunction. Sprague-Dawley dams were treated with or without vanadium during lactation. The weaned male offspring were trained to treadmill running for 5 weeks and then examined their motor coordination on a rotarod. The neuroprotective effect of exercise was evaluated by the brain-derived neurotrophic factor (BDNF) in plasma and cerebellum. The results demonstrated that vanadium-exposed rats exhibited impaired motor coordination and reduced plasma and cerebellar BDNF levels. Treadmill running during childhood-adolescence prevented the impaired motor coordination in the lactational vanadium-exposed rats. The beneficial effect of treadmill running on motor coordination in the vanadium-exposed rats was correlated to the normalization of plasma and cerebellar BDNF levels, as well as the increased TrkB phosphorylation in the cerebellum. The result suggests that exercise may prevent the impairment of motor coordination in the lactational vanadium-exposed rats.

Dean-Chuan Wang, Yu-Yi Lin, Hwai-Ting Lin
0

Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice.

Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma.

Scott E Williams, Idoia Garcia, Andrew J Crowther, Shiyi Li, Alyssa Stewart, Hedi Liu, Kendall J Lough, Sean O'Neill, Katherine Veleta, Esteban A Oyarzabal, Joseph R Merrill, Yen-Yu Ian Shih, Timothy R Gershon
0

Temporal Cerebral Microbleeds Are Associated With Radiation Necrosis and Cognitive Dysfunction in Patients Treated for Nasopharyngeal Carcinoma.

Radiation therapy for patients with nasopharyngeal carcinoma (NPC) may be complicated with radiation-induced brain necrosis (RN), resulting in deteriorated cognitive function. However, the underlying mechanism of this phenomenon remains unclear. This study attempts to elucidate the association between cerebral microbleeds (CMBs) and radiation necrosis and cognitive dysfunction in NPC patients treated with radiation therapy. This cross-sectional study included 106 NPC patients who were exposed to radiation therapy (78 patients with RN and 28 without RN). Sixty-six patients without discernable intracranial pathology were included as the control group. CMBs were confirmed using susceptibility-weighted magnetic resonance imaging. Cognitive function was accessed using Montreal Cognitive Assessment. Patients with a total score below 26 were defined as cognitively dysfunction. Seventy-seven patients (98.7%) in the RN group and 12 patients (42.9%) in the non-RN group had at least 1 CMB. In contrast, only 14 patients (21.2%) in the control group had CMBs. In patients with a history of radiation therapy, CMBs most commonly presented in temporal lobes (76.4%) followed by cerebellum (23.7%). Patients with RN had more temporal CMBs than those in the non-RN group (37.7 ± 51.9 vs 3.8 ± 12.6, respectively; P<.001). The number of temporal lobe CMBs was predictive for larger volume of brain necrosis (P<.001) in multivariate linear regression analysis. Although cognitive impairment was diagnosed in 55.1% of RN patients, only 7.1% of non-RN patients sustained cognitive impairment (P<.001). After adjusting for age, sex, education, period after radiation therapy, CMBs in other lobes, and RN volume, the number of temporal CMBs remained an independent risk factor for cognitive dysfunction (odds ratio [OR]: 1.03; 95% confidence interval [CI]: 1.01-1.04; P=.003). CMBs is a common radiological manifestation in NPC patients with RN. The number of temporal CMBs is independently associated with increased likelihood of cognitive dysfunction in patients with RN.

Qingyu Shen, Focai Lin, Xiaoming Rong, Wuyang Yang, Yi Li, Zhaoxi Cai, Pengfei Xu, Yongteng Xu, Yamei Tang
0

Differential expression of speckled POZ protein, SPOP: putative regulation by miR-145.

The speckle POZ protein, SPOP, is an adaptor of the Cul3-based ubiquitination process, and has been implicated in the carcinogenesis process. Despite recent elucidation of biological functions, regulation of SPOP gene expression has not been reported. In this study, the mRNA levels of the mouse SPOP (mSPOP) gene were first shown to vary noticeably in different tissues. However, the SPOP protein was detected in high abundance only in Purkinje cells of the cerebellum and seminiferous tubule of the testis, echoing previous reports of involvement of ubiquitination in neuron cells and in spermatogenesis. In other mouse tissues and human cancer cell lines analysed, only low SPOP protein levels were detected. The 3'-untranslated regions of both the mSPOP and human SPOP transcripts harbor a conserved putative miR-145 binding site (BS). In some tissues and cell lines, miR-145 and SPOP protein levels were in an inverse relationship suggesting miR-145 regulation. Luciferase assays of deletion and point mutation constructs of the miR-145 BS, and miR-145 induction by serum starvation that resulted in reduced endogenous SPOP levels provided further evidence that miR-145 is likely involved in post-transcriptional regulation of SPOP expression in selected tissues, and possibly with the participation of other miRNA species.

Chiu-Jung Huang, Hsing-Yu Chen, Wan-Yi Lin, Kong Bung Choo
0

Synthesis and biological evaluation of 10-(11) C-dihydrotetrabenazine as a vesicular monoamine transporter 2 radioligand.

In this study, we synthesized a new carbon-11-labeled radiotracer, 10-(11) C-dihydrotetrabenazine (10-(11) C-DTBZ), and evaluated its potential as a vesicular monoamine transporter 2 (VMAT2) radioligand. The radiolabeled precursor 10-O-desmethyl-dihydrotetrabenazine (10-O-desmethyl-DTBZ) was prepared with a six-step reaction using 3-methoxy-4-benzyloxybenzaldehyde as starting material. 10-(11) C-DTBZ was synthesized by heating 1.0 mg of 10-hydroxy precursor and (11) C-methyl iodide in the presence of 0.3 mL of dimethyl sulfoxide and 4.0 µL of 3 N KOH at room temperature for 3 min. After purification by solid phase extraction using an alumina Sep-Pak cartridge, the final 10-(11) C-DTBZ product was obtained with a radiochemical purity of >99% and an uncorrected radiochemical yield of 18-26% (end of bombardment (EOB), n = 6). The overall synthesis time was approximately 20 min from the EOB to release of the product for quality control. Using small-animal positron emission tomography (microPET), the striatum of normal rats was found to exhibit symmetrical labeling (STR /STL  = 0.98 ± 0.05, n = 3) and the highest uptake of radioactivity (striatum/cerebellum, ST/CB = 2.89 ± 0.31 at 30-60 min, n = 3). In contrast, rats with 6-hydroxydopamine unilateral lesions yielded asymmetrical striatal images with a higher 10-(11) C-DTBZ concentration on the unlesioned side (STunlesioned /CB = 2.53 ± 0.18, at 30-60 min, n = 3) compared with the lesioned side (STlesioned /CB = 1.26 ± 0.10, n = 3). These results suggest that 10-(11) C-DTBZ may represent a promising PET radiotracer for imaging VMAT2.

Xiaomin Li, Zhengping Chen, Jie Tang, Chunyi Liu, Pei Zou, Hongbo Huang, Cheng Tan, Huixin Yu
0

Motor skill learning enhances the expression of activity-regulated cytoskeleton-associated protein in the rat cerebellum.

Motor skill learning is essential for environmental adaptations during everyday life. It has been shown that the cerebellum plays an important role in both the adaptation of eye movements and the motor skill learning. However, the neuronal substrates responsible for consolidation of complex motor skills rather than simple reflexes are still uncertain. Because the induction of immediate-early genes activity-regulated cytoskeleton-associated protein (Arc) and zinc finger binding protein clone 268 (Zif268) has been regarded as a marker for recent neuronal activity, therefore, in the present study, a rat paradigm of motor skill learning was used to investigate the protein expression of Arc and zif268 in the cerebellum after motor skill learning. Rats were trained to traverse the runway apparatus for 5 days. Protein samples were collected from the cerebellar cortices 1 hour after the training on days 1, 3, and 5, and analyzed by western blotting. The results showed that the expression of Arc, but not zif268, was significantly increased in the cerebellum following motor skill learning. These findings suggest that motor skill learning induces Arc expression in the cerebellum, which may play a role in acquiring complex motor skills.

Dean-Chuan Wang, Yu-Yi Lin, Tsan-Ju Chen, Hwai-Ting Lin
0

Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat.

Signal transduction and neurotransmitter release in the vertebrate central nervous system are confined to the structurally complex presynaptic electron dense projections called "active zones." Although the nature of these projections remains a mystery, genetic and biochemical work has provided evidence for the active zone (AZ) associated proteins i.e. Piccolo/Aczonin, Bassoon, RIM1/Unc10, Munc13/Unc13, Liprin-α/SYD2/Dliprin and ELKS/CAST/BRP and their specific molecular functions. It still remains unclear, however, what their precise contribution is to the AZ assembly. In our project, we studied in Wistar rats the temporal and spatial distribution of AZ proteins and their colocalization with Synaptophysin in the developing cerebellar cortex at key stages of cerebellum neurogenesis. Our study demonstrated that AZ proteins were already present at the very early stages of cerebellar neurogenesis and exhibited distinct spatial and temporal variations in immunoexpression throughout the course of the study. Colocalization analysis revealed that the colocalization pattern was time-dependent and different for each studied protein. The highest collective mean percentage of colocalization (>85%) was observed at postnatal day (PD) 5, followed by PD10 (>83%) and PD15 (>80%). The findings of our study shed light on AZ protein immunoexpression changes during cerebellar cortex neurogenesis and help frame a hypothetical model of AZ assembly.

Judyta Karolina Juranek, Konark Mukherjee, Tabrez J Siddiqui, Benjamin J Kaplan, Jia Yi Li, Gudrun Ahnert-Hilger, Reinhard Jahn, Jaroslaw Calka
0

Stable signatures of schizophrenia in the cortical-subcortical-cerebellar network using fMRI of verbal working memory.

A dysfunction in working memory (WM) is a core cognitive impairment in schizophrenia that involves the cortical-subcortical-cerebellar network. We propose that in addition to other often-referred markers, the signal reduction in the network during verbal working memory (VWM) is a stable and intrinsic indicator of illness. We presented a Sternberg VWM task to 46 patients with schizophrenia and 46 healthy controls matched on performance accuracy during functional magnetic resonance imaging (fMRI). Reduced activation was demonstrated in the thalamus, cerebellar vermis, pons and the triangular part of the inferior frontal gyrus (IFG) in the patient group. We also found a "failure of deactivation" in the default mode network (DMN) in patients as represented by a low versus high load VWM. In addition, a reduced left lateralization in the triangular and opercular parts of the IFG was observed in the patient group replicating previous "failure of lateralization" findings in schizophrenia. A comparison of long (10 to 19 years) and short (3 to 9 years) durations of illness (DoIs) demonstrated that the DoI was only associated with the activation changes in the middle frontal gyrus and lateral temporal cortex but not with the IFG-subcortico-cerebellar regions observed. These alterations were consistent with the cognitive dysmetria described in the cortical-subcortical-cerebellar network in schizophrenia. In conclusion, the combination of reduced activation in the cortical-subcortical-cerebellar network during VWM in particular, reduced deactivation in the DMN and reduced lateralization in the IFG is thought to be stable neuroimaging signatures of schizophrenia.

Kayako Matsuo, Shen-Hsing Annabel Chen, Chih-Min Liu, Chen-Chung Liu, Tzung-Jeng Hwang, Ming H Hsieh, Yi Ling Chien, Hai-Gwo Hwu, Wen-Yih Isaac Tseng
0

A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice.

The axotomy-inducible enzyme Nna1 defines a subfamily of M14 metallocarboxypeptidases, and its mutation underlies the Purkinje cell degeneration (pcd) mouse. However, the relationship among its catalytic activity, substrate specificities, and the critical processes of neurodegeneration/axon regeneration is incompletely understood. Here we used a transgenic rescue strategy targeting expression of modified forms of Nna1 to Purkinje cells in pcd mice to determine structure-activity relationships for neuronal survival and in parallel characterized the enzymatic properties of purified recombinant Nna1. The Nna1 subfamily uniquely shares conserved substrate-determining residues with aspartoacylase that, when mutated, cause Canavan disease. Homologous mutations (D1007E and R1078E) inactivate Nna1 in vivo, as does mutation of its catalytic glutamate (E1094A), which implies that metabolism of acidic substrates is essential for neuronal survival. Consistent with reports that Nna1 is a tubulin glutamylase, recombinant Nna1-but not the catalytic mutants-removes glutamate from tubulin. Recombinant Nna1 metabolizes synthetic substrates with 2 or more C-terminal glutamate (but not aspartate) residues (V(max) for 3 glutamates is ∼7-fold higher than 2 glutamates although K(M) is similar). Catalysis is not ATP/GTP dependent, and mutating the ATP/GTP binding site of Nna1 has no effect in vivo. Nna1 is a monomeric enzyme essential for neuronal survival through hydrolysis of polyglutamate-containing substrates.

Hui-Yuan Wu, Taiyu Wang, Leyi Li, Kristen Correia, James I Morgan
0

Giant cell ependymoma-report of three cases and review of the literature.

Ependymomas constitute the most common type of primary spinal cord tumors, and are subclassified as myxopapillary ependymoma, classic ependymoma, and anaplastic ependymoma. Ependymomas can be further subclassified based on morphologic phenotype: cellular, papillary, tanycytic, clear cell, pigmented and epithelioid. Giant cell ependymoma (GCE), a rare variant, has recently been described. Reported cases have exhibited a wide anatomic distribution, including spinal cord, cerebrum and cerebellum. We report here three cases of GCE, arising from cerebrum in a 5-year-old girl, spinal cord in a 34-year-old female and cerebellum in an 86-year-old female respectively. Histologically those cases showed prominent pleomorphic giant cells with focal perivascular pseudorosettes in all cases. Tumor cells were immunopositive for GFAP and EMA. Only the first case was qualified for anaplastic ependymoma. No recurrence was noted in these three cases after 57, 46 and 6 months of follow-up respectively. By reviewing the literature, GCEs arising from spinal cord and cerebellum tended to have low-grade morphology while supratentorially located GCEs tended to have anaplastic features. GCEs were preferentially located in extraventricular regions. Anaplastic GCEs in adult population seemed to pursue a more aggressive behavior. Gross total resection should still be the main treatment for GCEs.

Jian Yi Li, Jose I Lopez, Suzanne Z Powell, Stephen W Coons, Gregory N Fuller
0

Comparison of Cbln1 and Cbln2 functions using transgenic and knockout mice.

Cerebellin precursor protein 1 (Cbln1) is the prototype of a family of secreted neuronal glycoproteins (Cbln1-4) and its genetic elimination results in synaptic alterations in cerebellum (CB) and striatum. In CB, Cbln1 acts as a bi-functional ligand bridging pre-synaptic β-neurexins on granule cells to post-synaptic Grid2 on Purkinje neurons. Although much is known concerning the action of Cbln1, little is known of the function of its other family members. Here, we show that Cbln1 and Cbln2 have similar binding activities to β-neurexins and Grid2 and the targeted ectopic expression of Cbln2 to Purkinje cells in transgenic mice rescues the cerebellar deficits in Cbln1-null animals: suggesting that the two proteins have redundant function mediated by their common receptor binding properties. Cbln1 and Cbln2 are also co-expressed in the endolysosomal compartment of the thalamic neurons responsible for the synaptic alterations in striatum of Cbln1-null mice. Therefore, to determine whether the two family members have similar functions, we generated Cbln2-null mice. Cbln2-null mice do not show the synaptic alterations evident in striatum of Cbln1-null mice. Thus, Cbln2 can exhibit functional redundancy with Cbln1 in CB but it does not have the same properties as Cbln1 in thalamic neurons, implying one or both utilize different receptors/mechanisms in this brain region.

Yongqi Rong, Peng Wei, Jennifer Parris, Hong Guo, Roberto Pattarini, Kristen Correia, Leyi Li, Sheila V Kusnoor, Ariel Y Deutch, James I Morgan
0

[Effect of bushen huoxue granule on dopamine neurotransmitter and dopamine transporter in the brain of patients with Parkinson's disease].

To observe the effect of Bushen Huoxue Granule (BHG) on dopamine (DA) neurotransmitter and dopamine transporter (DAT) in the brain of patients with Parkinson's disease (PD) as an adjunctive therapy. Ninety-four PD patients were randomly assigned to two groups, 47 in each group. Madopar was given to all as the basic treatment group. The placebo was given to those in the control group while BHG was given to those in the treatment. The therapeutic course for all was three months. Before and after treatment DA levels in the brain of patients were detected by encephalofluctuograph (EFG) technique. Changes of DAT in the striatum of patients in the treatment group were detected by positron emission tomography (PET) and region of interest (ROI) analysis. (1) Before treatment the DA level was lower in the two groups than the normal value, showing significant difference (P < 0.01), but with no significant difference between the two groups (P > 0.05). After treatment the DA level obviously increased in the two groups, showing significant difference from that before treatment (P < 0.01). No significant difference existed in the DA level in the two groups when compared with the normal value (P > 0.05), but with significant difference between the two groups (P < 0.05). Better results were obtained in the treatment group than in the control group. (2) The DAT radioactive accumulation inside the striatum increased obviously in the treatment group after treatment. ROI analysis showed the total ratio of striatum/cerebellum before and after treatment was 1.86 +/- 0.32 and 2.61 +/- 0.53 respectively, showing statistical difference (P < 0.05). BHG could improve the DA level of PD patients, and increasing DAT contents in the striatum, thus playing a role in effectively treating PD.

Shao-dan Li, Ming-hui Yang, Yi Liu
0

Alzheimer's disease markers, hypertension, and gray matter damage in normal elderly.

It is not well known whether Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers are associated with brain damage in cognitively normal elderly. The combined influence of CSF biomarkers and hypertension (HTN) on the gray matter (GM) is also not well described. One hundred fifteen cognitively healthy subjects (mean age 62.6 ± 9.5%, 62% women) received clinical assessment, a high resolution magnetic resonance imaging (MRI), and a lumbar puncture. The CSF levels of total tau (t-tau), hyperphosphorylated tau (p-tau(231)), amyloid beta (Aβ42/Aβ40), p-tau(231)/Aβ42, and t-tau/Aβ42 were dichotomized as "high" and "low" based on accepted cut off values. Statistical parametric mapping was used to examine MRI scans for regional GM density, studied as a function of the CSF markers, HTN, and combination of both. Global and medial temporal lobe (MTL) GM was also assessed. Voxel based morphometry revealed that higher t-tau was associated with lower GM density in the precunei. Subjects with higher p-tau(231) and p-tau(231)/Aβ42 had less GM in temporal lobes. Low Aβ42/Aβ40 was related to less GM in the thalami, caudate, and midbrain. Subjects with hypertension showed more GM atrophy in the cerebellum, occipital, and frontal regions. Simultaneous presence of elevated CSF AD biomarkers and HTN was associated with more GM atrophy than either marker individually, but no interaction effects were identified. In conclusion, in normal elderly CSF tau markers were associated predominantly with lower GM estimates in structures typically affected early in the AD process. In this presymptomatic stage when no cognitive impairment is present, AD biomarkers and HTN have additive effects on gray matter damage.

Lidia Glodzik, Lisa Mosconi, Wai Tsui, Susan de Santi, Raymond Zinkowski, Elizabeth Pirraglia, Kenneth E Rich, Pauline McHugh, Yi Li, Schantel Williams, Fahad Ali, Henrik Zetterberg, Kaj Blennow, Pankaj Mehta, Mony J de Leon
0

Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis.

Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.

Xin Gao, Wenjing Zhang, Li Yao, Yuan Xiao, Lu Liu, Jieke Liu, Siyi Li, Bo Tao, Chandan Shah, Qiyong Gong, John A Sweeney, Su Lui
0

5-Hydroxymethylcytosine alterations in the human postmortem brains of autism spectrum disorder.

Autism spectrum disorders (ASDs) include a group of syndromes characterized by impaired language, social and communication skills, in addition to restrictive behaviors or stereotypes. However, with a prevalence of 1.5% in developed countries and high comorbidity rates, no clear underlying mechanism that unifies the heterogeneous phenotypes of ASD exists. 5-hydroxymethylcytosine (5hmC) is highly enriched in the brain and recognized as an essential epigenetic mark in developmental and brain disorders. To explore the role of 5hmC in ASD, we used the genomic DNA isolated from the postmortem cerebellum of both ASD patients and age-matched controls to profile genome-wide distribution of 5hmC. We identified 797 age-dependent differentially hydroxymethylated regions (DhMRs) in the young group (age ≤ 18), while no significant DhMR was identified in the groups over 18 years of age. Pathway and disease association analyses demonstrated that the intragenic DhMRs were in the genes involved in cell-cell communication and neurological disorders. Also, we saw significant 5hmC changes in the larger group of psychiatric genes. Interestingly, we found that the predicted cis functions of non-coding intergenic DhMRs strikingly associate with ASD and intellectual disorders. A significant fraction of intergenic DhMRs overlapped with topologically associating domains. These results together suggest that 5hmC alteration is associated with ASD, particularly in the early development stage, and could contribute to the pathogenesis of ASD.

Ying Cheng, Ziyi Li, Sasicha Manupipatpong, Li Lin, Xuekun Li, Tianlei Xu, Yong-Hui Jiang, Qiang Shu, Hao Wu, Peng Jin
0

Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis

Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta­-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular ­gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.

Xin Gao, Wenjing Zhang, Li Yao, Yuan Xiao, Lu Liu, Jieke Liu, Siyi Li, Bo Tao, Chandan Shah, Qiyong Gong, John Sweeney, Su Lui
0

Common variants at 2q11.2, 8q21.3, and 11q13.2 are associated with major mood disorders.

Bipolar disorder (BPD) and major depressive disorder (MDD) are primary major mood disorders. Recent studies suggest that they share certain psychopathological features and common risk genes, but unraveling the full genetic architecture underlying the risk of major mood disorders remains an important scientific task. The public genome-wide association study (GWAS) data sets offer the opportunity to examine this topic by utilizing large amounts of combined genetic data, which should ultimately allow a better understanding of the onset and development of these illnesses. Genome-wide meta-analysis was performed by combining two GWAS data sets on BPD and MDD (19,637 cases and 18,083 controls), followed by replication analyses for the loci of interest in independent 12,364 cases and 76,633 controls from additional samples that were not included in the two GWAS data sets. The single-nucleotide polymorphism (SNP) rs10791889 at 11q13.2 was significant in both discovery and replication samples. When combining all samples, this SNP and multiple other SNPs at 2q11.2 (rs717454), 8q21.3 (rs10103191), and 11q13.2 (rs2167457) exhibited genome-wide significant association with major mood disorders. The SNPs in 2q11.2 and 8q21.3 were novel risk SNPs that were not previously reported, and SNPs at 11q13.2 were in high LD with potential BPD risk SNPs implicated in a previous GWAS. The genome-wide significant loci at 2q11.2 and 11q13.2 exhibited strong effects on the mRNA expression of certain nearby genes in cerebellum. In conclusion, we have identified several novel loci associated with major mood disorders, adding further support for shared genetic risk between BPD and MDD. Our study highlights the necessity and importance of mining public data sets to explore risk genes for complex diseases such as mood disorders.

Xiao Xiao, Lu Wang, Chuang Wang, Ti-Fei Yuan, Dongsheng Zhou, Fanfan Zheng, Lingyi Li, Maria Grigoroiu-Serbanescu, Masashi Ikeda, Nakao Iwata, Atsushi Takahashi, Yoichiro Kamatani, Michiaki Kubo, Martin Preisig, Zoltán Kutalik, Enrique Castelao, Giorgio P
0

Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis.

Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.

Xin Gao, Wenjing Zhang, Li Yao, Yuan Xiao, Lu Liu, Jieke Liu, Siyi Li, Bo Tao, Chandan Shah, Qiyong Gong, John A Sweeney, Su Lui
0

Brain gray matter abnormalities in progressive supranuclear palsy revisited.

Whole-brain voxel-based morphometry (VBM) studies of progressive supranuclear palsy (PSP) have demonstrated heterogeneous findings regarding gray matter (GM) abnormalities. Here, we used Seed-based Mapping, a coordinate-based meta-analytic approach to identify consistent regions of GM anomalies across studies of PSP. Totally, 18 original VBM studies, comprising 284 patients with PSP and 367 healthy controls were included. As compared to healthy controls, patients with PSP demonstrated significant GM reductions in both cortical and subcortical regions, including the frontal motor cortices, medial (including anterior cingulate cortex) and lateral frontal cortices, insula, superior temporal gyrus, striatum (putamen and caudate nucleus), thalamus, midbrain, and anterior cerebellum. Our study further suggests that many confounding factors, such as age, male ratio, motor severity, cognitive impairment severity, and illness duration of PSP patients, and scanner field-strength, could contribute to the heterogeneity of GM alterations in PSP across studies. Our comprehensive meta-analysis demonstrates a specific neuroanatomical pattern of GM atrophy in PSP with the involvement of the cortical-subcortical circuitries that mediate vertical supranuclear gaze palsy, motor disabilities (postural instability with falls and parkinsonism), and cognitive-behavioral disturbances. Confounding factors merit attention in future studies.

PingLei Pan, Yi Liu, Yang Zhang, Hui Zhao, Xing Ye, Yun Xu
0

Altered putamen functional connectivity is associated with anxiety disorder in Parkinson's disease.

In this study, we used resting state-functional magnetic resonance imaging (rs-fMRI) to explore altered putamen functional connectivity (FC) in Parkinson's disease patients with anxiety disorder. We divided 65 Parkinson's disease patients into anxiety (PD-A; =18) and non-anxiety (PD-NA; =45) groups based on a Hamilton Anxiety Rating Scale cutoff score of 12. The PD-A patients exhibited altered putamen FC with cortical and subcortical regions. The PD-A patients showed enhanced putamen FC with the caudatum, which correlated with increased emotional processing during anxiety. Decreased putamen FC with the orbitofrontal gyrus and cerebellum also correlated with increased anxiety in Parkinson's disease. Our findings demonstrate that anxiety disorder in Parkinson's disease is associated with abnormal putamen FC networks, especially with caudatum, orbitofrontal gyrus and cerebellum.

Xixi Wang, Junyi Li, Yongsheng Yuan, Min Wang, Jian Ding, Jiejin Zhang, Lin Zhu, Yuting Shen, Hui Zhang, Kezhong Zhang
0

Novel OFD1 frameshift mutation in a Chinese boy with Joubert syndrome: a case report and literature review.

Joubert syndrome (JBTS) is a clinically and genetically heterogeneous group of ciliopathy with a key diagnostic feature of 'molar tooth sign' in brain MRI. So far, over 20 causative genes have been identified, but only one gene (OFD1) results in X-linked Joubert syndrome 10 (JBTS10). Six mutations in the OFD1 gene have been found to cause JBTS10. In this study, we identified a novel OFD1 mutation of c.2843_2844 delAA (p.Lys948ArgfsX) in a 3-month-old boy with a 'molar tooth sign' and clinical features of JBTS using targeted exome next-generation sequencing. The de-novo OFD1 mutation in exon 21 leads to a frameshift mutation generating a prematurely truncated protein and is predicted to partly reduce the function of the OFD1 protein. Our study expands the genotype-phenotype spectrum in JBTS and will have applications in prenatal and early diagnosis of the disorder. This is the first report of the OFD1 mutation causing JBTS in a Chinese population.

Kaihui Zhang, Chen Meng, Jing Ma, Min Gao, Yuqiang Lv, Yi Liu, Zhongtao Gai
0

Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping.

The gray matter abnormalities revealed by magnetic resonance imaging are inconsistent, especially in pediatric individuals with autism spectrum disorder (ASD) (age < 18 years old), a phenomenon possibly related to the core pathophysiology of ASD. The purpose of our meta-analysis was to identify and map the specific gray matter abnormalities in pediatric ASD individuals thereby exploring the potential effects of clinical and demographic characteristics of these gray matter changes. A systematic search was conducted to identify voxel-based morphometry studies in pediatric individuals with ASD. The effect-size signed differential mapping method was used to quantitatively estimate the regional gray matter abnormalities in pediatric ASD individuals. Meta-regression was used to examine the associations among age, gender, intelligence quotient, symptom severity and gray matter changes. Fifteen studies including 364 pediatric individuals with ASD (male = 282, age = 10.3 ± 4.4 years) and 377 healthy controls (male = 289, age = 10.5 ± 4.2 years) were included. Pediatric ASD individuals showed significant gray matter increases in the right angular gyrus, left superior and middle frontal gyrus, left precuneus, left inferior occipital gyrus and right inferior temporal gyrus, most of which involving the default mode network, and decreases in the left cerebellum and left postcentral gyrus. The meta-regression analysis showed that the repetitive behavior scores of the Autism Diagnostic Interview-Revised were positively associated with increased gray matter volumes in the right angular gyrus. Increased rather than decreased gray matter volume, especially involving the angular gyrus and prefrontal cortex may be the core pathophysiology in the early course of ASD.

Jieke Liu, Li Yao, Wenjing Zhang, Yuan Xiao, Lu Liu, Xin Gao, Chandan Shah, Siyi Li, Bo Tao, Qiyong Gong, Su Lui
0

Loss of the golgin GM130 causes Golgi disruption, Purkinje neuron loss, and ataxia in mice.

The Golgi apparatus lies at the heart of the secretory pathway where it is required for secretory trafficking and cargo modification. Disruption of Golgi architecture and function has been widely observed in neurodegenerative disease, but whether Golgi dysfunction is causal with regard to the neurodegenerative process, or is simply a manifestation of neuronal death, remains unclear. Here we report that targeted loss of the golgin GM130 leads to a profound neurological phenotype in mice. Global KO of mouse GM130 results in developmental delay, severe ataxia, and postnatal death. We further show that selective deletion of GM130 in neurons causes fragmentation and defective positioning of the Golgi apparatus, impaired secretory trafficking, and dendritic atrophy in Purkinje cells. These cellular defects manifest as reduced cerebellar size and Purkinje cell number, leading to ataxia. Purkinje cell loss and ataxia first appear during postnatal development but progressively worsen with age. Our data therefore indicate that targeted disruption of the mammalian Golgi apparatus and secretory traffic results in neuronal degeneration in vivo, supporting the view that Golgi dysfunction can play a causative role in neurodegeneration.

Chunyi Liu, Mei Mei, Qiuling Li, Peristera Roboti, Qianqian Pang, Zhengzhou Ying, Fei Gao, Martin Lowe, Shilai Bao
0

Trigeminal neuralgia caused by a dilated superior cerebellar artery and a draining vein of cerebellar arteriovenous malformations: a case report and review of the literature.

Trigeminal neuralgia (TN) secondary to arterivenous malformations (AVMs) is relatively rare. We here report on a case of TN caused by cerebellar AVMs that was successfully treated by total AVMs resection in conjunction with microvasecular decompression (MVD) in one stage. In addition, we perform a review of the literature about the treatment of TN caused by cerebellar AVMs.

Zi-Yi Li, Jian-Tao Liang, Hong-Qi Zhang, Yu-Hai Bao, Feng Ling
0

Human Umbilical Cord Mesenchymal Stem Cells Protect Against SCA3 by Modulating the Level of 70 kD Heat Shock Protein.

Spinocerebellar ataxia 3 (SCA3), which is a progressive neurodegenerative disease, is currently incurable. Emerging studies have reported that human umbilical cord mesenchymal stem cells (HUC-MSCs) transplantation could be a promising therapeutic strategy for cerebellar ataxias. However, few studies have evaluated the effects of HUC-MSCs on SCA3 transgenic mouse. Thus, we investigated the effects of HUC-MSCs on SCA3 mice and the underlying mechanisms in this study. SCA3 transgenic mice received systematic administration of 2 × 10 HUC-MSCs once per week for 12 continuous weeks. Motor coordination was measured blindly by open field tests and footprint tests. Immunohistochemistry and Nissl staining were applied to detect neuropathological alternations. Neurotrophic factors in the cerebellum were assessed by ELISA. We used western blotting to detect the alternations of heat shock protein 70 (HSP70), IGF-1, mutant ataxin-3, and apoptosis-associated proteins. Tunel staining was also used to detect apoptosis of affected cells. The distribution and differentiation of HUC-MSCs were determined by immunofluorescence. Our results exhibited that HUC-MSCs transplantation significantly alleviated motor impairments, corresponding to a reduction of cerebellar atrophy, preservation of neurons, decreased expression of mutant ataxin-3, and increased expression of HSP70. Implanted HUC-MSCs were mainly distributed in the cerebellum and pons with no obvious differentiation, and the expressions of IGF-1, VEGF, and NGF in the cerebellum were significantly elevated. Furthermore, with the use of HSP70 analogy quercetin injection, it demonstrated that HSP70 is involved in mutant ataxin-3 reduction. These results showed that HUC-MSCs implantation is a potential treatment for SCA3, likely through upregulating the IGF-1/HSP70 pathway and subsequently inhibiting mutant ataxin-3 toxicity.

Tan Li, Yi Liu, Linjie Yu, Jiamin Lao, Meijuan Zhang, Jiali Jin, Zhengjuan Lu, Zhuo Liu, Yun Xu
0

Alterations of the amplitude of low-frequency fluctuations in anxiety in Parkinson's disease.

Anxiety disorders are very common in Parkinson's disease (PD), but neural mechanisms underlying these symptoms still remain elusive. In the present study, we aim to investigate the neural substrates in anxiety disorders in PD. The present study comprised 48 PD patients and 19 healthy subjects. According to a Hamilton Anxiety Rating Scale cutoff score of 12, we divided PD patients into PD with anxiety groups (n = 15) and PD without anxiety groups (n = 33). Patients with apparent depressive symptoms and cognitive decline were excluded. All subjects were evaluated for demographic and clinical characteristics and performed 3.0 T MRI scans. The alterations of neural activity were examined utilizing resting-state fMRI (rs-fMRI) combined with the amplitude of low-frequency fluctuations (ALFF) approach. Results of the analysis of covariance indicated that PD patients with anxiety displayed increased ALFF mainly in right cerebellar posterior lobe (CPL), bilateral brainstem and right orbitofrontal gyrus (OFG). Subsequently, the Spearman correlation demonstrated negative correlation between ALFF values in right cerebellum_9 and the Hamilton Anxiety Rating Scale scores. Our findings demonstrated that anxiety disorders in PD were associated with increased activities in anxiety-related brain regions, including OFG, brainstem and CPL, using the ALFF approach.

Xixi Wang, Junyi Li, Min Wang, Yongsheng Yuan, Lin Zhu, Yuting Shen, Hui Zhang, Kezhong Zhang
0

ITEMS YOU SAVED RECENTLY